21,435 research outputs found

    The New Confrontation—Hearsay Dilemma

    Get PDF

    Sex Discrimination in Law School Placement

    Get PDF

    Fano-Kondo effect in a two-level system with triple quantum dots: shot noise characteristics

    Full text link
    We theoretically compare transport properties of Fano-Kondo effect with those of Fano effect. We focus on shot noise characteristics of a triple quantum dot (QD) system in the Fano-Kondo region at zero temperature, and discuss the effect of strong electric correlation in QDs. We found that the modulation of the Fano dip is strongly affected by the on-site Coulomb interaction in QDs.Comment: 4 pages, 6figure

    Signatures of the Milky Way's Dark Disk in Current and Future Experiments

    Full text link
    In hierarchical structure formation models of disk galaxies, a dark matter disk forms as massive satellites are preferentially dragged into the disk-plane where they dissolve. Here, we quantify the importance of this dark disk for direct and indirect dark matter detection. The low velocity of the dark disk with respect to the Earth enhances detection rates in direct detection experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy range. Comparing this with rates at higher energy is sensitive to M_{WIMP}, providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The annual modulation signal is significantly boosted by the dark disk and the modulation phase is shifted by ~3 weeks relative to the dark halo. The variation of the observed phase with recoil energy determines M_{WIMP}, once the dark disk properties are fixed by future astronomical surveys. The low velocity of the particles in the dark disk with respect to the solar system significantly enhances the capture rate of WIMPs in the Sun, leading to an increased flux of neutrinos from the Sun which could be detected in current and future neutrino telescopes. The dark disk contribution to the muon flux from neutrino back conversion at the Earth is increased by a factor of ~5 compared to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one referenc

    Fractionalization and confinement in the U(1) and Z2Z_2 gauge theories of strongly correlated systems

    Full text link
    Recently, we have elucidated the physics of electron fractionalization in strongly interacting electron systems using a Z2Z_2 gauge theory formulation. Here we discuss the connection with the earlier U(1) gauge theory approaches based on the slave boson mean field theory. In particular, we identify the relationship between the holons and Spinons of the slave-boson theory and the true physical excitations of the fractionalized phases that are readily described in the Z2Z_2 approach.Comment: 4 page

    The X-ray Evolution of Merging Galaxies

    Full text link
    From a Chandra survey of nine interacting galaxy systems the evolution of X-ray emission during the merger process has been investigated. From comparing Lx/Lk and Lfir/Lb it is found that the X-ray luminosity peaks around 300 Myr before nuclear coalescence, even though we know that rapid and increasing star formation is still taking place at this time. It is likely that this drop in X-ray luminosity is a consequence of outflows breaking out of the galactic discs of these systems. At a time around 1 Gyr after coalescence, the merger-remnants in our sample are X-ray dim when compared to typical X-ray luminosities of mature elliptical galaxies. However, we do see evidence that these systems will start to resemble typical elliptical galaxies at a greater dynamical age, given the properties of the 3 Gyr system within our sample, indicating that halo regeneration will take place within low Lx merger-remnants.Comment: 4 pages, 1 figure, to appear in the Proceedings of the IAU Symposium No. 23
    corecore