38,866 research outputs found

    Moore-Penrose inverses of Gram matrices Leaving a Cone Invariant in an Indefinite Inner Product Space

    Full text link
    In this paper we characterize Moore-Penrose inverses of Gram matrices leaving a cone invariant in an indefinite inner product space using indefinite matrix multiplication. This characterization includes the acuteness (or obtuseness) of certain closed convex cones

    Numerical simulations of supersonic flow through oscillating cascade sections

    Get PDF
    A finite difference code was developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small perturbation theory is the ability to model real airfoils that have thickness and camber. Sample predictions are presented for a cascade of loaded airfoils and show appreciable differences in the unsteady surface pressure distributions when compared with the flat plate results

    Numerical analysis of supersonic flow through oscillating cascade sections by using a deforming grid

    Get PDF
    A finite difference code was developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small-perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small-perturbation theory is the ability to model real airfoils that have thickness and camber. Sample predictions are presented for a section of the rotor on a supersonic throughflow compressor designed at NASA Lewis Research Center. Preliminary results indicate that two-dimensional, flat plate analysis predicts conservative flutter boundaries

    Carotid intima media thickness and low high-density lipoprotein (HDL) in South Asian immigrants: could dysfunctional HDL be the missing link?

    Get PDF
    IntroductionSouth Asian immigrants (SAIs) in the US exhibit higher prevalence of coronary artery disease (CAD) and its risk factors compared with other ethnic populations. Conventional CAD risk factors do not explain the excess CAD risk; therefore there is a need to identify other markers that can predict future risk of CAD in high-risk SAIs. The objective of the current study is to assess the presence of sub-clinical CAD using common carotid artery intima-media thickness (CCA-IMT), and its association with metabolic syndrome (MS) and pro-inflammatory/dysfunctional HDL (Dys-HDL).Material and methodsA community-based study was conducted on 130 first generation SAIs aged 35-65 years. Dys-HDL was determined using the HDL inflammatory index. Analysis was completed using logistic regression and Fisher's exact test.ResultsSub-clinical CAD using CCA-IMT ≥ 0.8 mm (as a surrogate marker) was seen in 31.46%. Age and gender adjusted CCA-IMT was significantly associated with type 2 diabetes (p = 0.008), hypertension (p = 0.012), high-sensitivity C-reactive protein (p < 0.001) and homocysteine (p = 0.051). Both the presence of MS and Dys-HDL was significantly correlated with CCA-IMT, even after age and gender adjustment. The odds of having Dys-HDL with CCA-IMT were 5 times (95% CI: 1.68, 10.78).ConclusionsThere is a need to explore and understand non-traditional CAD risk factors with a special focus on Dys-HDL, knowing that SAIs have low HDL levels. This information will not only help to stratify high-risk asymptomatic SAI groups, but will also be useful from a disease management point of view

    Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    Get PDF
    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed

    Comparison of 3-D viscous flow computations of Mach 5 inlet with experimental data

    Get PDF
    A time marching 3-D full Navier-Stokes code, called PARC3D, is validated for an experimental Mach 5 inlet configuration using the data obtained in the 10 x 10 ft supersonic wind tunnel at the NASA Lewis Research Center. For the first time, a solution is obtained for this configuration with the actual geometry, the tunnel conditions, and all the bleed zones modeled in the computation. Pitot pressure profiles and static pressures at various locations in the inlet are compared with the corresponding experimental data. The effect of bleed zones, located in different places on the inlet walls, in eliminating the low energy vortical flow generated from the 3-D shock-boundary layer interaction is simulated very well even though some approximations are used in applying the bleed boundary conditions and in the turbulence model. A further detailed study of the effect of individual bleed ports is needed to understand fully the actual mechanism of efficiently eliminating the vortical flow from the inlet. A better turbulence model would help to improve the accuracy even further in predicting the corner flow boundary layer profiles

    Capacity and Life Estimation of Flooded Lead Acid Batteries using Eddy Current Sensors

    Get PDF
    Lead acid batteries are widely used in domestic, industrial and automotive applications. Even after lot of advancements in battery technologies, lead acid cells are still in use because of their high capacity and low cost. To use any battery effectively, first we should be able to identify the available capacity or State of Charge (SoC). There are many techniques available to measure SoC of a lead acid battery. One such unique method is to measure the capacity using eddy current sensors. This method is unique because it is non-obtrusive and online. Eddy current sensors (ECS) are wire wound inductors which work on the principle of electromagnetic induction. Eddy currents are the currents generated on a conductive material when it is kept in a varying magnetic. Eddy current sensors generate varying magnetic eldest and will be able to identify the properties of conductive materials like thickness, conductivity, material composition etc. Also they can be used as proximity sensors. Lead acid batteries use lead metal as cathode. Upon usage(discharge) the lead metal converts to lead sulfate and revert back to lead after charging. These changes in lead electrode can be monitored using eddy current sensors. The impedance of an eddy current sensor will change when it is kept close to the lead electrode when the battery is charging or discharging. These impedance parameters can be monitored to determine the battery SoC. When lead is deposited on cathode, there will be more eddy current loss in the target and the total resistance of coil increases. On the other hand, when lead is deposited on the electrode because of increase in the magnitude of eddy currents which oppose the source magnetic, the total inductance of coil decreases. We can observe exactly opposite behaviour of coil resistance and inductance when the lead electrode is converted to less conductive lead sulfate. There is a lot of research on using ECS to measure SoC of lead acid batteries and there are still many challenges to be addressed. First we have explained about different circuit designs we have used to monitor the battery capacity using eddy current sensors. After that, we have explained about our complete experimental setup and the procedure to measure the sensor parameters using the setup. Then, we have discussed about different issues involved in the eddy current sensing based state of charge measurement. Eddy current sensors are affected by temperature variations. We have studied the coil resistance behaviour with temperature at different frequencies using simulations and experiments. We have obtained the conditions for linear variation of coil resistance with temperature. The measured temperature compensation scheme is applied and the results are discussed. We have also modified the measurement system design in order to minimize the lift o errors. We have used a metallic clamp structure to minimize the lift o errors. We have used finite element analysis based simulations to study different design parameters and their effect on the sensitivity of eddy current sensor. We have created 2D eddy current models and the sensitivity of coil resistance is computed by changing the coil dimensions and the core permeability. We have also performed error analysis and computed the error due to the tilt angle shift between coil and electrode. We have also computed the error due to the internal heating of battery. We have also studied the effect of acid strati cation on state of charge for both sealed and hooded batteries. We have proposed a multi coil method to minimize the errors in SoC measurement due to acid strati cation for Flooded type batteries. We have used finite element analysis based simulations to compute the error due to acid strati cation by increasing the number of coils. Finally we have derived the equation for electrode Q factor using the transformer model of eddy current sensor. The derived Q factor equation is then used to study the aging of lead acid batteries both by using experiments and simulations. Finally we have explained a detail procedure to measure the state of charge(SoC) and state of health(SoH) of a hooded lead acid battery using eddy current sensing method
    corecore