4,504 research outputs found
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases
We derive exact analytical results for the wave functions and energies of
harmonically trapped two-component Bose-Einstein condensates with weakly
repulsive interactions under rotation. The isospin symmetric wave functions are
universal and do not depend on the matrix elements of the two-body interaction.
The comparison with the results from numerical diagonalization shows that the
ground state and low-lying excitations consists of condensates of p-wave pairs
for repulsive contact interactions, Coulomb interactions, and the repulsive
interactions between aligned dipoles.Comment: 4 pages, 1 figure; revised version explains exact solutions in terms
of isospin symmetry and Hund's rul
Mixtures of Bose gases confined in concentrically coupled annular traps
A two-component Bose-Einstein condensate confined in an axially-symmetric
potential with two local minima, resembling two concentric annular traps, is
investigated. The system shows a number of quantum phase transitions that
result from the competition between phase coexistence, and radial/azimuthal
phase separation. The ground-state phase diagram, as well as the rotational
properties, including the (meta)stability of currents in this system, are
analysed.Comment: 6 pages, 5 figures, minor revision
Optimal evaluation of single-molecule force spectroscopy experiments
The forced rupture of single chemical bonds under external load is addressed.
A general framework is put forward to optimally utilize the experimentally
observed rupture force data for estimating the parameters of a theoretical
model. As an application we explore to what extent a distinction between
several recently proposed models is feasible on the basis of realistic
experimental data sets.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.
Phase transitions in optimal unsupervised learning
We determine the optimal performance of learning the orientation of the
symmetry axis of a set of P = alpha N points that are uniformly distributed in
all the directions but one on the N-dimensional sphere. The components along
the symmetry breaking direction, of unitary vector B, are sampled from a
mixture of two gaussians of variable separation and width. The typical optimal
performance is measured through the overlap Ropt=B.J* where J* is the optimal
guess of the symmetry breaking direction. Within this general scenario, the
learning curves Ropt(alpha) may present first order transitions if the clusters
are narrow enough. Close to these transitions, high performance states can be
obtained through the minimization of the corresponding optimal potential,
although these solutions are metastable, and therefore not learnable, within
the usual bayesian scenario.Comment: 9 pages, 8 figures, submitted to PRE, This new version of the paper
contains one new section, Bayesian versus optimal solutions, where we explain
in detail the results supporting our claim that bayesian learning may not be
optimal. Figures 4 of the first submission was difficult to understand. We
replaced it by two new figures (Figs. 4 and 5 in this new version) containing
more detail
Size distribution of sputtered particles from Au nanoislands due to MeV self-ion bombardment
Nanoisland gold films, deposited by vacuum evaporation of gold onto Si(100)
substrates, were irradiated with 1.5 MeV Au ions up to a fluence of
ions cm and at incidence angles up to
with respect to the surface normal. The sputtered particles were collected on
carbon coated grids (catcher grid) during ion irradiation and were analyzed
with transmission electron microscopy and Rutherford backscattering
spectrometry. The average sputtered particle size and the areal coverage are
determined from transmission electron microscopy measurements, whereas the
amount of gold on the substrate is found by Rutherford backscattering
spectrometry. The size distributions of larger particles (number of
atoms/particle, 1,000) show an inverse power-law with an exponent of
-1 in broad agreement with a molecular dynamics simulation of ion impact
on cluster targets.Comment: 13 pages, 8 figures, Submitted for publication in JA
A Quantum Analogue of the Jarzynski Equality
A quantum analogue of the Jarzynski equality is constructed. This equality
connects an ensemble average of exponentiated work with the Helmholtz
free-energy difference in a nonequilibrium switching process subject to a
thermal heat bath. To confirm its validity in a practical situation, we also
investigate an open quantum system that is a spin 1/2 system with a scanning
magnetic field interacting with a thermal heat bath. As a result, we find that
the quantum analogue functions well.Comment: 7 pages, 1 figure; to appear in J. Phys. Soc. Jpn. 69 (2000
Finite sampling effects on generalized fluctuation-dissipation relations for steady states
We study the effects of the finite number of experimental data on the
computation of a generalized fluctuation-dissipation relation around a
nonequilibrium steady state of a Brownian particle in a toroidal optical trap.
We show that the finite sampling has two different effects, which can give rise
to a poor estimate of the linear response function. The first concerns the
accessibility of the generalized fluctuation-dissipation relation due to the
finite number of actual perturbations imposed to the control parameter. The
second concerns the propagation of the error made at the initial sampling of
the external perturbation of the system. This can be highly enhanced by
introducing an estimator which corrects the error of the initial sampled
condition. When these two effects are taken into account in the data analysis,
the generalized fluctuation-dissipation relation is verified experimentally
Correlation in the velocity of a Brownian particle induced by frictional anisotropy and magnetic field
We study the motion of charged Brownian particles in an external magnetic
field. It is found that a correlation appears between the components of
particle velocity in the case of anisotropic friction, approaching
asymptotically zero in the stationary limit. If magnetic field is smaller
compared to the critical value, determined by frictional anisotropy, the
relaxation of the correlation is non-oscillating in time. However, in a larger
magnetic field this relaxation becomes oscillating. The phenomenon is related
to the statistical dependence of the components of transformed random force
caused by the simultaneous influence of magnetic field and anisotropic
dissipation.Comment: 7 pages, 2 figure
Density Functional Theory of Multicomponent Quantum Dots
Quantum dots with conduction electrons or holes originating from several
bands are considered. We assume the particles are confined in a harmonic
potential and assume the electrons (or holes) belonging to different bands to
be different types of fermions with isotropic effective masses. The density
functional method with the local density approximation is used. The increased
number of internal (Kohn-Sham) states leads to a generalisation of Hund's first
rule at high densities. At low densitites the formation of Wigner molecules is
favored by the increased internal freedom.Comment: 11 pages, 5 figure
- …
