127 research outputs found
Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity
The oncoprotein c-Fos has been commonly found differently expressed in cancer cells. Our previous work showed that mouse cells lacking the immediate-early gene c-fos are hypersensitive to ultraviolet (UVC) light. Here, we demonstrate that in human diploid fibroblasts UV-triggered induction of c-Fos protein is a delayed and long-lasting event. Sustained upregulation of c-Fos goes along with transcriptional stimulation of the NER gene xpf, which harbors an AP-1 binding site in the promoter. Data gained on c-Fos knockdown and c-Fos overexpressing human cells provide evidence that c-Fos/AP-1 stimulates upregulation of XPF, thereby increasing the cellular repair capacity protecting from UVC-induced DNA damage. When these cells are pre-exposed to a low non-toxic UVC dose and challenged with a subsequent high dose of UVC irradiation, they show accelerated repair of UVC-induced DNA adducts and reduced cell kill. The data indicate a protective role of c-Fos induction by triggering an adaptive response pathway
Late palaeozoic magmatism in the basement rocks Southwest of Mt. Olympos, Central Pelagonian zone, Greece: Remnants of a permo-carboniferous magmatic arc
We dated basement rocks from several localities southwest of Mt. Olympos, as well as from a locality near the top of the mountain using the single zircon Pb/Pb evaporation technique. For the samples southwest of the mountain, the ages obtained range from ca. 280 to 290 Ma, with only a few zircon grains being around 300 Ma. By contrast, the sample from near the top of the mountain appears to be slightly younger, with ca. 270 Ma. These ages imply that the granitoids crystallized during Late Carboniferous - Early Permian times, and are therefore younger than the basement gneisses of other regions of the Pelagonian zone, which yielded zircon ages of around 300 Ma (e.g. Yarwood & Aftalion 1976, Mountrakis 1983, De Bono 1998, Engel & Reischmann 2001). However, the ages obtained in the present study are identical, within error, to the muscovite Ar-Ar cooling ages from Mt. Ossa (Lips 1998). Our geochronological data show that the magmatic evolution for this part of the basement of the Pelagonian Zone lasted at least 30 Ma
Kinematics of the Southern Rhodope Core Complex (North Greece)
The Southern Rhodope Core Complex is a wide metamorphic dome exhumed in the northern Aegean as a result of large-scale extension
from mid-Eocene to mid-Miocene times. Its roughly triangular shape is bordered on the SW by the Jurassic and Cretaceous metamorphic
units of the Serbo-Macedonian in the Chalkidiki peninsula and on the N by the eclogite bearing gneisses of the Sideroneron
massif. The main foliation of metamorphic rocks is flat lying up to 100 km core complex width. Most rocks display a stretching
lineation trending NEâ SW. The Kerdylion detachment zone located at the SW controlled the exhumation of the core complex from
middle Eocene to mid-Oligocene. From late Oligocene to mid-Miocene exhumation is located inside the dome and is accompanied
by the emplacement of the synkinematic plutons of Vrondou and Symvolon. Since late Miocene times, extensional basin sediments
are deposited on top of the exhumed metamorphic and plutonic rocks and controlled by steep normal faults and flat-ramp-type
structures. Evidence from Thassos Island is used to illustrate the sequence of deformation from stacking by thrusting of the
metamorphic pile to ductile extension and finally to development of extensional Plio-Pleistocene sedimentary basin. Paleomagnetic
data indicate that the core complex exhumation is controlled by a 30� dextral rotation of the Chalkidiki block. Extensional
displacements are restored using a pole of rotation deduced from the curvature of stretching lineation trends at core complex
scale. It is argued that the Rhodope Core Complex has recorded at least 120 km of extension in the North Aegean, since the
last 40 My
Validation of GEMS operational v2.0 total column NO2 and HCHO during the GMAP/SIJAQ campaign
The Geostationary Environmental Monitoring Spectrometer (GEMS), the first geostationary air quality instrument, onboard the GEO-KOMPSAT-2B (GK2B) satellite, produces hourly observations over Asia with 3.5 km × 8 km spatial resolution. To evaluate the GEMS L2 products, the National Institute of Environmental Research (NIER) organized the GEMS Map of Air Pollutants 2021 (GMAP2021) and the Satellite Integrated Joint monitoring of Air Quality 2022 (SIJAQ2022) campaigns during October 2021 to November 2021 and from June 2022 to July 2022, respectively. While GMAP2021 mainly targeted the SMA (Seoul Metropolitan Area), the SIJAQ2022 campaign extended to the southeastern area of South Korea. In this study, a comparison between Pandora and Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) products and an evaluation of the GEMS operational v2.0 total column NO2 and HCHO products are conducted. A comparative analysis between the Pandora (P189) and the IUP Bremen MAX-DOAS instrument at the Incheon NIER-ESC site was performed to analyze discrepancies between the retrieval processors (Pandora: PGN official processor, MAX-DOAS: MMF in FRM4DOAS framework). Aligning the viewing directions of both Pandora and MAX-DOAS leads to a significant increase in the slope and correlation coefficient from 0.87 to 0.96 and from 0.86 to 0.96, respectively, in the case of NO2 tropospheric columns. Similarly, for HCHO tropospheric columns, slope and correlation coefficient change from 0.94 to 1.09 and from 0.81 to 0.90 when matching the viewing geometries of both instruments. In contrast to tropospheric columns, total HCHO columns derived from Pandora (P189) direct-sun measurements show significantly larger values than the MAX-DOAS ones, with a mean relative difference (MRD) of 126 %. This bias can however be reduced to 33 % after suitable adjustment of the direct-sun retrieval settings. The GEMS v2.0 NO2 total column product, evaluated over 6 official PGN sites in South Korea, shows good agreement with a correlation coefficient of 0.87 and similar seasonal and diurnal NO2 variation. However, GEMS tends to report higher values than Pandora with a mean relative difference of +41 %. The magnitude of the GEMS overestimation is amplified in highly polluted conditions (i.e. during winter and at noontime). Compared to 6 MAX-DOAS stations and 6 Pandora stations, the GEMS HCHO product captures well the seasonal and diurnal variation of HCHO and shows good agreement both with MAX-DOAS and Pandora with slopes of 0.84 and 0.79, respectively, and correlation coefficients of 0.86 for both. Large columns, however, tend to be systematically underestimated
A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts.
The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time
A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts.
The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time
Paleogene phreatomagmatic volcanism on the western main fault of the northern Upper Rhine Graben (Kisselwörth diatreme and Nierstein–Astheim Volcanic System, Germany)
- …
