1,608 research outputs found

    The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range

    Get PDF
    Recycling of process streams and reduction of waste disposal using membrane technology in a continuous textile washing process after dyeing with reactive dyes have been investigated theoretically. A mathematical process model of a conventional open-width washing range has been extended by membrane processes to determine the benefits and limitations of the modified washing processes. The concentrations of hydrolysed reactive dyes, sodium chloride, urea and caustic soda have been calculated with this process model. Reverse osmosis for desalination and decolourising and nanofiltration for decolourising have been implemented as membrane technology. Reusing filtered wash water in a previous wash step results in more water saving than recycling to the same wash step according to the process calculations. The total fresh water demand can be reduced by 70% and the total waste water volume by 90% compared with the conventional process. Greater reduction of fresh water use is limited by the osmotic pressure difference between the retentate an permeate streams

    Optimization of commercial net spacers in spiral wound membrane modules

    Get PDF
    CFD simulations have been used to determine mass transfer coefficients and power consumption of commercial net spacers. The simulations show transversal and longitudinal vortices, vortex shedding and instationary flow behavior leading to the enhanced mass transfer in spacer filled-channels compared to empty channels. The results of the simulations were validated with experiments and compared with data reported in literature, showing satisfactory agreement. Furthermore, CFD simulations were used to optimize the geometry of commercial net spacers in terms of mass transfer and power consumption. The performance of these optimized spacer geometries will be used as reference for future work on the development of new high-performance spacer shapes

    First-principles modeling of temperature and concentration dependent solubility in the phase separating Fex_xCu1x_{1-x} alloy system

    Full text link
    We present a novel cluster-expansion (CE) approach for the first-principles modeling of temperature and concentration dependent alloy properties. While the standard CE method includes temperature effects only via the configurational entropy in Monte Carlo simulations, our strategy also covers the first-principles free energies of lattice vibrations. To this end, the effective cluster interactions of the CE have been rendered genuinely temperature dependent, so that they can include the vibrational free energies of the input structures. As a model system we use the phase-separating alloy Fe-Cu with our focus on the Fe-rich side. There, the solubility is derived from Monte Carlo simulations, whose precision had to be increased by averaging multiple CEs. We show that including the vibrational free energy is absolutely vital for the correct first-principles prediction of Cu solubility in the bcc Fe matrix: The solubility tremendously increases and is now in quantitative agreement with experimental findings

    Vouchers for higher education?

    Get PDF

    Using participatory and creative methods to facilitate emancipatory research with people facing multiple disadvantage: a role for health and care professionals

    Get PDF
    Participatory and creative research methods are a powerful tool for enabling active engagement in the research process of marginalised people. It can be particularly hard for people living with multiple disadvantage, such as disabled people from ethnic minority backgrounds, to access research projects that are relevant to their lived experience. This article argues that creative and participatory methods facilitate the co-researchers’ engagement in the research process, which thus becomes more empowering. Exploring the congruence of these methods with their professional ethos, health and care professionals can use their skills to develop them further. Both theory and practice examples are presented

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance

    Future orientation and planning in forestry: a comparison of forest managers' planning horizons in Germany and the Netherlands

    Get PDF
    Long range (or strategic) planning is an important tool for forest management to deal with the complex and unpredictable future. However, it is the ability to make meaningful predictions about the rapidly changing future that is questioned. What appears to be particularly neglected is the question of the length of time horizons and the limits (if any) to these horizons, despite being considered one of the most critical factors in strategic planning. As the future creation of values lies within individual responsibility, this research empirically explored the limits (if any) of individual foresters¿ time horizons. To draw comparisons between countries with different traditions in forest management planning, data were collected through telephone surveys of forest managers in the state/national forest services of the Netherlands and Germany. In order to minimize other cultural differences, the research in Germany concentrated on the federal state of Nordrhein-Westfalen, which has considerable similarities with the Netherlands, e.g. in topography, forest types and forest functions. The results show that, in practice, 15 years appears to be the most distant horizon that foresters can identify with. This is in sharp contrast to the time horizons spanning decades and even generations that are always said to exist in forestry. The ¿doctrine of the long run¿¿the faith in the capacity of foresters to overcome the barriers of the uncertain future and look ahead and plan for long-range goals¿which in many countries still underlies traditional forest management, can therefore be rejected

    Influence of the substrate-induced strain and irradiation disorder on the Peierls transition in TTF-TCNQ microdomains

    Full text link
    The influence of the combined effects of substrate-induced strain, finite size and electron irradiation-induced defects have been studied on individual micron-sized domains of the organic charge transfer compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) by temperature-dependent conductivity and current-voltage measurements. The individual domains have been isolated by focused ion beam etching and electrically contacted by focused ion and electron beam induced deposition of metallic contacts. The temperature-dependent conductivity follows a variable range hopping behavior which shows a crossover of the exponent as the Peierls transition is approached. The low temperature behavior is analyzed within the segmented rod model of Fogler, Teber and Shklowskii, as originally developed for a charge-ordered quasi one-dimensional electron crystal. The results are compared with data obtained on as-grown and electron irradiated epitaxial TTF-TCNQ thin films of the two-domain type

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology

    Full text link
    The effects of entanglement in solutions and melts of unknotted ring polymers have been addressed by several theoretical and numerical studies. The system properties have been typically profiled as a function of ring contour length at fixed solution density. Here, we use a different approach to investigate numerically the equilibrium and kinetic properties of solutions of model ring polymers. Specifically, the ring contour length is maintained fixed, while the interplay of inter- and intra-chain entanglement is modulated by varying both solution density (from infinite dilution up to \approx 40 % volume occupancy) and ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium metric properties of rings with either topology are found to be only weakly affected by the increase of solution density. Even at the highest density, the average ring size, shape anisotropy and length of the knotted region differ at most by 40% from those of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain entanglement: for both unknots and trefoils the characteristic times of ring size relaxation, reorientation and diffusion change by one order of magnitude across the considered range of concentrations. Yet, significant topology-dependent differences in kinetics are observed only for very dilute solutions (much below the ring overlap threshold). For knotted rings, the slowest kinetic process is found to correspond to the diffusion of the knotted region along the ring backbone.Comment: 17 pages, 11 figure
    corecore