148 research outputs found

    MAGMO: Coherent magnetic fields in the star forming regions of the Carina-Sagittarius spiral arm tangent

    Get PDF
    We present the pilot results of the `MAGMO' project, targeted observations of ground-state hydroxyl masers towards sites of 6.7-GHz methanol maser emission in the Carina-Sagittarius spiral arm tangent, Galactic longitudes 280 degrees to 295 degrees. The `MAGMO' project aims to determine if Galactic magnetic fields can be traced with Zeeman splitting of masers associated with star formation. Pilot observations of 23 sites of methanol maser emission were made, with the detection of ground-state hydroxyl masers towards 11 of these and six additional offset sites. Of these 17 sites, nine are new detections of sites of 1665-MHz maser emission, three of them accompanied by 1667-MHz emission. More than 70% of the maser features have significant circular polarization, whilst only ~10% have significant linear polarization (although some features with up to 100% linear polarization are found). We find 11 Zeeman pairs across six sites of high-mass star formation with implied magnetic field strengths between -1.5 mG and +3.8 mG and a median field strength of +1.6 mG. Our measurements of Zeeman splitting imply that a coherent field orientation is experienced by the maser sites across a distance of 5.3+/-2.0 kpc within the Carina-Sagittarius spiral arm tangent.Comment: 19 pages, 13 figures, accepted for publication in MNRA

    A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile

    Full text link
    Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).Comment: 10 pages, 5 Figures, accepted for publication in MNRA

    From 10 Kelvin to 10 TeraKelvin: Insights on the Interaction Between Cosmic Rays and Gas in Starbursts

    Full text link
    Recent work has both illuminated and mystified our attempts to understand cosmic rays (CRs) in starburst galaxies. I discuss my new research exploring how CRs interact with the ISM in starbursts. Molecular clouds provide targets for CR protons to produce pionic gamma rays and ionization, but those same losses may shield the cloud interiors. In the densest molecular clouds, gamma rays and Al-26 decay can provide ionization, at rates up to those in Milky Way molecular clouds. I then consider the free-free absorption of low frequency radio emission from starbursts, which I argue arises from many small, discrete H II regions rather than from a "uniform slab" of ionized gas, whereas synchrotron emission arises outside them. Finally, noting that the hot superwind gas phase fills most of the volume of starbursts, I suggest that it has turbulent-driven magnetic fields powered by supernovae, and that this phase is where most synchrotron emission arises. I show how such a scenario could explain the far-infrared radio correlation, in context of my previous work. A big issue is that radio and gamma-ray observations imply CRs also must interact with dense gas. Understanding how this happens requires a more advanced understanding of turbulence and CR propagation.Comment: Conference proceedings for "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012). 16 pages, 5 figure

    Do the Unidentified EGRET Sources Trace Annihilating Dark Matter in the Local Group?

    Full text link
    In a cold dark matter (CDM) framework of structure formation, the dark matter haloes around galaxies assemble through successive mergers with smaller haloes. This merging process is not completely efficient, and hundreds of surviving halo cores, or {\it subhaloes}, are expected to remain in orbit within the halo of a galaxy like the Milky Way. While the dozen visible satellites of the Milky Way may trace some of these subhaloes, the majority are currently undetected. A large number of high-velocity clouds (HVCs) of neutral hydrogen {\it are} observed around the Milky Way, and it is plausible that some of the HVCs may trace subhaloes undetected in the optical. Confirming the existence of concentrations of dark matter associated with even a few of the HVCs would represent a dramatic step forward in our attempts to understand the nature of dark matter. Supersymmetric (SUSY) extensions of the Standard Model of particle physics currently suggest neutralinos as a natural well-motivated candidate for the non-baryonic dark matter of the universe. If this is indeed the case, then it may be possible to detect dark matter indirectly as it annihilates into neutrinos, photons or positrons. In particular, the centres of subhaloes might show up as point sources in gamma-ray observations. In this work we consider the possibility that some of the unidentified EGRET γ\gamma-ray sources trace annihilating neutralino dark matter in the dark substructure of the Local Group. We compare the observed positions and fluxes of both the unidentified EGRET sources and the HVCs with the positions and fluxes predicted by a model of halo substructure, to determine to what extent any of these three populations could be associated.Comment: 12 Pages, 4 figures, to appear in a special issue of ApSS. Presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Complex Faraday depth structure of active galactic nuclei as revealed by broad-band radio polarimetry

    Get PDF
    We present a detailed study of the Faraday depth structure of four bright (>1 Jy), strongly polarized, unresolved radio-loud quasars. The Australia Telescope Compact Array (ATCA) was used to observe these sources with 2 GHz of instantaneous bandwidth from 1.1 to 3.1 GHz. This allowed us to spectrally resolve the polarization structure of spatially unresolved radio sources, and by fitting various Faraday rotation models to the data, we conclusively demonstrate that two of the sources cannot be described by a simple rotation measure (RM) component modified by depolarization from a foreground Faraday screen. Our results have important implications for using background extragalactic radio sources as probes of the Galactic and intergalactic magneto-ionic media as we show how RM estimations from narrow-bandwidth observations can give erroneous results in the presence of multiple interfering Faraday components. We postulate that the additional RM components arise from polarized structure in the compact inner regions of the radio source itself and not from polarized emission from galactic or intergalactic foreground regions. We further suggest that this may contribute significantly to any RM time variability seen in RM studies on these angular scales. Follow-up, high-sensitivity very long baseline interferometry (VLBI) observations of these sources will directly test our predictions

    Magnetically Dominated Strands of Cold Hydrogen in the Riegel-Crutcher Cloud

    Get PDF
    We present new high resolution (100 arcsec) neutral hydrogen (H I) self-absorption images of the Riegel-Crutcher cloud obtained with the Australia Telescope Compact Array and the Parkes Radio Telescope. The Riegel-Crutcher cloud lies in the direction of the Galactic center at a distance of 125 +/- 25 pc. Our observations resolve the very large, nearby sheet of cold hydrogen into a spectacular network of dozens of hair-like filaments. Individual filaments are remarkably elongated, being up to 17 pc long with widths of less than ~0.1 pc. The strands are reasonably cold, with spin temperatures of 40 K and in many places appearing to have optical depths larger than one. Comparing the H I images with observations of stellar polarization we show that the filaments are very well aligned with the ambient magnetic field. We argue that the structure of the cloud has been determined by its magnetic field. In order for the cloud to be magnetically dominated the magnetic field strength must be > 30 microGauss.Comment: To appear in the Astrophysical Journal. 26 pages, 6 figures. Full resolution version available at ftp://ftp.atnf.csiro.au/pub/people/nmcclure/papers/rc_cloud.pd

    Musculoskeletal manifestations of lower-extremity coccidioidomycosis: a case series

    Get PDF
    Background: Coccidioidomycosis is a fungal infection endemic to the southwestern United States. Musculoskeletal manifestations are uncommon and seen in disseminated disease. While the involvement of the axial skeleton has been well described, the literature is limited on diseases involving the lower extremity. Methods: We identified three patients, at two regional academic medical centers in southern Arizona, who demonstrated different manifestations of osteoarticular coccidioidomycosis involving the lower extremity. Results: Case 1 is a 41-year-old male, with a history of HIV/AIDS and vertebral coccidioidomycosis, who presented with abscesses in the left hemipelvis and left proximal femoral osteomyelitis. He was treated with staged surgical debridement, including the use of amphotericin B impregnated beads. He remains on indefinite oral posaconazole suppression. Case 2 is a 46-year-old female, who presented with suspected right knee osteoarthritis. An MRI revealed septic arthritis and osteomyelitis. Necrotic bone was debrided, and synovial fluid cultures were positive for Coccidioides. She underwent a resection of the native knee joint with the insertion of an amphotericin B and voriconazole impregnated spacer. She continues oral itraconazole and awaits a total knee arthroplasty. Case 3 is a 76-year-old male, who presented with a draining right heel ulcer. Radiographs revealed bony destruction consistent with Charcot arthropathy. Irrigation and debridement revealed the gelatinous destruction of the talus and calcaneus, and cultures confirmed Coccidioides infection. A polymethyl methacrylate voriconazole spacer was placed. He subsequently underwent arthrodesis and remains on lifelong fluconazole. Conclusion: Lower-extremity osteoarticular coccidioidomycosis has various debilitating presentations that frequently mimic non-infectious etiologies. Treatment warrants surgical debridement, and prolonged antifungal therapy should be considered.</p

    SDHDF: A new file format for spectral-domain radio astronomy data

    Full text link
    Radio astronomy file formats are now required to store wide frequency bandwidths and multiple simultaneous receiver beams and must be able to account for versatile observing modes and numerous calibration strategies. The need to capture and archive high-time and high frequency-resolution data, along with the comprehensive metadata that fully describe the data, implies that a new data format and new processing software are required. This requirement is suited to a well-defined, hierarchically-structured and flexible file format. In this paper we present the Spectral-Domain Hierarchical Data Format (`SDHDF') -- a new file format for radio astronomy data, in particular for single dish or beam-formed data streams. Since 2018, SDHDF has been the primary format for data products from the spectral-line and continuum observing modes at Murriyang, the CSIRO Parkes 64-m radio telescope, and we demonstrate that this data format can also be used to store observations of pulsars and fast radio bursts.Comment: Supplementary material (SDHDF definition): https://ars.els-cdn.com/content/image/1-s2.0-S2213133724000192-mmc1.pd
    corecore