23,591 research outputs found

    Fecal Viral Community Responses to High-Fat Diet in Mice.

    Get PDF
    Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD.IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities

    Photo--assisted current and shot noise in the fractional quantum Hall effect

    Full text link
    The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise derivative exhibits steps as a function of bias. In contrast, at Laughlin fractions, the backscattering current and the backscattering noise both exhibit evenly spaced singularities, which are reminiscent of the tunneling density of states singularities for quasiparticles. The spacing is determined by the quasiparticle charge νe\nu e and the ratio of the DC bias with respect to the drive frequency. Photo--assisted transport can thus be considered as a probe for effective charges at such filling factors, and could be used in the study of more complicated fractions of the Hall effect. A non-perturbative method for studying photo--assisted transport at ν=1/2\nu=1/2 is developed, using a refermionization procedure.Comment: 14 pages, 6 figure

    Large scale grain mantle disruption in the Galactic Center

    Full text link
    We present observations of C2H5OH toward molecular clouds in Sgr A, Sgr B2 and associated with thermal and non-thermal features in the Galactic center. C2H5OH emission in Sgr A and Sgr B2 is widespread, but not uniform. C2H5OH emission is much weaker or it is not detected in some molecular clouds in both complexes, in particular those with radial velocities between 70 and 120 km/s. While most of the clouds associated with the thermal features do not show C2H5OH emission, that associated with the Non-Thermal Radio Arc shows emission. The fractional abundance of C2H5OH in most of the clouds with radial velocities between 0 and 70 km/s in Sgr A and Sgr B2 is relatively high, of few 1e-8. The C2H5OH abundance decreases by more than one order of magnitude (aprox. 1e-9) in the clouds associated with the thermal features. The large abundance of C2H5OH in the gas-phase indicates that C2H5OH has formed in grains and released to gas-phase by shocks in the last aprox. 1e5 years.Comment: In press in Astrophysical Journal Letters 7 pages, 1 table, 1 figur

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 13920+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate \le0.17 M_{\odot} yr1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of \geq105^{5} yr with a rotational velocity of \leq1228 km s1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    The rotational broadening and the mass of the donor star of GRS 1915+105

    Full text link
    The binary parameters of the microquasar GRS 1915+105 have been determined by the detection of Doppler-shifted 12CO and 13CO lines in its K-band spectrum (Greiner et al., 2001, Nature, 414, 522). Here, we present further analysis of the same K-band VLT spectra and we derive a rotational broadening of the donor star of V sin i=26+-3 km/s from the 12CO/13CO lines. Assuming that the K-type star is tidally locked to the black hole and is filling its Roche-lobe surface, then the implied mass ratio is q = M_d/M_x = 0.058+-0.033. This result, combined with (P, K, i)=(33.5 d, 140 km/s, 66 deg) gives a more refined mass estimate for the black hole, Mx=14.0+4.4MM_x=14.0+-4.4 M_{\odot}, than previously estimated, using an inclination of i=66+-2 deg (Fender et al. 1999) as derived from the orientation of the radio jets and a more accurate distance. The mass for the early K-type giant star is Md=0.81±0.53MM_d=0.81\pm0.53 M_{\odot}, consistent with a more evolved stripped-giant donor star in GRS 1915+105 than, for example, the donor star of the prototype black-hole X-ray transient, V404 Cyg which has the longest binary period after GRS 1915+105.Comment: 4 pages, 1 figure, A&A Lette
    corecore