87 research outputs found
Probing correlated phases of bosons in optical lattices via trap squeezing
We theoretically analyze the response properties of ultracold bosons in
optical lattices to the static variation of the trapping potential. We show
that, upon an increase of such potential (trap squeezing), the density
variations in a central region, with linear size of >~ 10 wavelengths, reflect
that of the bulk system upon changing the chemical potential: hence measuring
the density variations gives direct access to the bulk compressibility. When
combined with standard time-of-flight measurements, this approach has the
potential of unambiguously detecting the appearence of the most fundamental
phases realized by bosons in optical lattices, with or without further external
potentials: superfluid, Mott insulator, band insulator and Bose glass.Comment: 4 pages, 4 figure
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
The disordered-free-moment phase: a low-field disordered state in spin-gap antiferromagnets with site dilution
Site dilution of spin-gapped antiferromagnets leads to localized free
moments, which can order antiferromagnetically in two and higher dimensions.
Here we show how a weak magnetic field drives this order-by-disorder state into
a novel disordered-free-moment phase, characterized by the formation of local
singlets between neighboring moments and by localized moments aligned
antiparallel to the field. This disordered phase is characterized by the
absence of a gap, as it is the case in a Bose glass. The associated
field-driven quantum phase transition is consistent with the universality of a
superfluid-to-Bose-glass transition. The robustness of the
disordered-free-moment phase and its prominent features, in particular a series
of pseudo-plateaus in the magnetization curve, makes it accessible and relevant
to experiments.Comment: 4 pages, 4 figure
FFLO oscillations and magnetic domains in the Hubbard model with off-diagonal Coulomb repulsion
We observe the effect of non-zero magnetization m onto the superconducting
ground state of the one dimensional repulsive Hubbard model with correlated
hopping X. For t/2 < X < 2t/3, the system first manifests
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) oscillations in the pair-pair
correlations. For m = m1 a kinetic energy driven macroscopic phase separation
into low-density superconducting domains and high-density polarized walls takes
place. For m > m2 the domains fully localize, and the system eventually becomes
a ferrimagnetic insulator.Comment: IOP RevTeX class, 18 pages, 13 composite *.eps figure
Off-diagonal correlations in a one-dimensional gas of dipolar bosons
We present a quantum Monte Carlo study of the one-body density matrix (OBDM)
and the momentum distribution of one-dimensional dipolar bosons, with dipole
moments polarized perpendicular to the direction of confinement. We observe
that the long-range nature of the dipole interaction has dramatic effects on
the off-diagonal correlations: although the dipoles never crystallize, the
system goes from a quasi-condensate regime at low interactions to a regime in
which quasi-condensation is discarded, in favor of quasi-solidity. For all
strengths of the dipolar interaction, the OBDM shows an oscillatory behavior
coexisting with an overall algebraic decay; and the momentum distribution shows
sharp kinks at the wavevectors of the oscillations, (where
is the atom density), beyond which it is strongly suppressed. This
\emph{momentum filtering} effect introduces a characteristic scale in the
momentum distribution, which can be arbitrarily squeezed by lowering the atom
density. This shows that one-dimensional dipolar Bose gases, realized e.g. by
trapped dipolar molecules, show strong signatures of the dipolar interaction in
time-of-flight measurements.Comment: 10 pages, 6 figures. v2: fixed a mistake in the comparison with Ref.
9, as well as several typos. Published versio
Dimer, trimer and FFLO liquids in mass- and spin-imbalanced trapped binary mixtures in one dimension
We present a systematic investigation of attractive binary mixtures in
presence of both spin- and mass-imbalance in one dimensional setups described
by the Hubbard model. After discussing typical cold atomic experimental
realizations and the relation between microscopic and effective parameters, we
study several many-body features of trapped Fermi-Fermi and Bose-Bose mixtures
such as density profiles, momentum distributions and correlation functions by
means of numerical density-matrix-renormalization-group and Quantum Monte Carlo
simulations. In particular, we focus on the stability of
Fulde-Ferrell-Larkin-Ovchinnikov, dimer and trimer fluids in inhomogeneous
situations, as typically realized in cold gas experiments due to the harmonic
confinement. We finally consider possible experimental signatures of these
phases both in the presence of a finite polarization and of a finite
temperature.Comment: 19 pages, 25 figure
Modified spin-wave theory with ordering vector optimization I: frustrated bosons on the spatially anisotropic triangular lattice
We investigate a system of frustrated hardcore bosons, modeled by an XY
antiferromagnet on the spatially anisotropic triangular lattice, using
Takahashi's modified spin-wave (MSW) theory. In particular we implement
ordering vector optimization on the ordered reference state of MSW theory,
which leads to significant improvement of the theory and accounts for quantum
corrections to the classically ordered state. The MSW results at zero
temperature compare favorably to exact diagonalization (ED) and projected
entangled-pair state (PEPS) calculations. The resulting zero-temperature phase
diagram includes a 1D quasi-ordered phase, a 2D Neel ordered phase, and a 2D
spiraling ordered phase. We have strong indications that the various ordered or
quasi-ordered phases are separated by spin-liquid phases with short-range
correlations, in analogy to what has been predicted for the Heisenberg model on
the same lattice. Within MSW theory we also explore the finite-temperature
phase diagram. We find that the zero-temperature long-range-ordered phases turn
into quasi-ordered phases (up to a Berezinskii-Kosterlitz-Thouless
temperature), while zero-temperature quasi-ordered phases become short-range
correlated at finite temperature. These results show that modified spin-wave
theory is very well suited for describing ordered and quasi-ordered phases of
frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at
zero and finite temperatures. While MSW theory, just as other theoretical
methods, cannot describe spin-liquid phases, its breakdown provides a fast
method for singling out Hamiltonians which may feature these intriguing quantum
phases. We thus suggest a tool for guiding our search for interesting systems
whose properties are necessarily studied with a physical quantum simulator.Comment: 40 pages, 16 figure
The effects of disorder in dimerized quantum magnets in mean field approximations
We study theoretically the effects of disorder on Bose-Einstein condensates
(BEC) of bosonic triplon quasiparticles in doped dimerized quantum magnets. The
condensation occurs in a strong enough magnetic field Hc, where the
concentration of bosons in the random potential is sufficient to form the
condensate. The effect of doping is partly modeled by delta - correlated
disorder potential, which (i) leads to the uniform renormalization of the
system parameters and (ii) produces disorder in the system with renormalized
parameters. These approaches can explain qualitatively the available
magnetization data in the Tl_(1-x)K_(x)CuCl_3 compound taken as an example. In
addition to the magnetization, we found that the speed of the Bogoliubov mode
has a peak as a function of doping parameter, x. No evidence of the pure Bose
glass phase has been obtained in the BEC regime.Comment: Includes 19 pages, 5 figure
Entanglement study of the 1D Ising model with Added Dzyaloshinsky-Moriya interaction
We have studied occurrence of quantum phase transition in the one-dimensional
spin-1/2 Ising model with added Dzyaloshinsky-Moriya (DM) interaction from bi-
partite and multi-partite entanglement point of view. Using exact numerical
solutions, we are able to study such systems up to 24 qubits. The minimum of
the entanglement ratio R \tau 2/\tau 1 < 1, as a novel estimator of
QPT, has been used to detect QPT and our calculations have shown that its
minimum took place at the critical point. We have also shown both the
global-entanglement (GE) and multipartite entanglement (ME) are maximal at the
critical point for the Ising chain with added DM interaction. Using matrix
product state approach, we have calculated the tangle and concurrence of the
model and it is able to capture and confirm our numerical experiment result.
Lack of inversion symmetry in the presence of DM interaction stimulated us to
study entanglement of three qubits in symmetric and antisymmetric way which
brings some surprising results.Comment: 18 pages, 9 figures, submitte
- …
