17 research outputs found
Recombinant Tropomyosin from the Pacific Oyster (<i>Crassostrea gigas</i>) for Better Diagnosis
The Pacific oyster is a commercially important mollusc and, in contrast to most other shellfish species, frequently consumed without prior heat treatment. Oysters are rich in many nutrients but can also cause food allergy. Knowledge of their allergens and cross-reactivity remains very limited. These limitations make an optimal diagnosis of oyster allergy difficult, in particular to the Pacific oyster (Crassostrea gigas), the most cultivated and consumed oyster species worldwide. This study aimed to characterise IgE sensitisation profiles of 21 oyster-sensitised patients to raw and heated Pacific oyster extract using immunoblotting and advanced mass spectrometry, and to assess the relevance of recombinant oyster allergen for improved diagnosis. Tropomyosin was identified as the major allergen recognised by IgE from 18 of 21 oyster-sensitised patients and has been registered with the WHO/IUIS as the first oyster allergen (Cra g 1). The IgE-binding capacity of oyster-sensitised patients' IgE to purified natural and recombinant tropomyosin from oyster, prawn, and dust mite was compared using enzyme-linked immunosorbent assay. The degree of IgE binding varied between patients, indicating partial cross-sensitisation and/or co-sensitisation. Amino acid sequence alignment of tropomyosin from these three species revealed five regions that contain predicted IgE-binding epitopes, which are most likely responsible for this cross-reactivity. This study fully biochemically characterises the first and major oyster allergen Cra g 1 and demonstrates that the corresponding recombinant tropomyosin should be implemented in improved component-resolved diagnostics and guide future immunotherapy
Variability of allergens in commercial fish extracts for skin prick testing
BACKGROUND: Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. METHODS: Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. RESULTS: The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or β-enolase but not parvalbumin. CONCLUSIONS: Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy
Exposure to Bioaerosols During Fish Processing on Board Norwegian Fishing Trawlers
Abstract
Objectives
The main objective was to gain more knowledge on exposure to bioaerosols in the processing area on board fishing trawlers.
Methods
Exposure sampling was carried out during the work shifts when processing fish in the processing area on board five deep-sea fishing trawlers (trawlers 1–5). Exposure samples were collected from 64 fishermen breathing zone and from stationary sampling stations on board five deep-sea fishing trawlers (1–5). Trawlers 2, 3, and 4 were old ships, not originally built for on board processing of the catch. Trawlers 1 and 5 were relatively new and built to accommodate processing machineries. On trawlers 1–4 round fish was produced; the head and entrails were removed before the fishes were frozen in blocks. Trawler 5 had the most extensive processing, producing fish fillets. Samples were analysed for total protein, trypsin activity, parvalbumin, and endotoxin. One side analysis of variance and Kruskal–Wallis H test were used to compare levels of exposure on the different trawlers.
Results
Personal exposure to total protein were higher on the three oldest trawlers (2, 3, and 4) compared with the two new trawlers (1 and 5). Highest activity of trypsin was detected on the four trawlers producing round fish (1–4). Parvalbumin was detected in 58% of samples from the fillet-trawler (5) compared with 13% of samples from the four trawlers producing round fish. The highest level of endotoxin was detected when using high-pressure water during cleaning machines and floors in the processing area.
Conclusions
Fishermen in the processing area on board Norwegian trawlers are exposed to airborne bioaerosols as proteins, trypsin, fish allergen parvalbumin, and endotoxin. Levels varied between trawlers and type of production.
</jats:sec
Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy
Variation in Shrimp Allergens: Place of Origin Effects on Food Safety Assessment
Due to the widespread use of shellfish ingredients in food products, accurate food labelling is urgently needed for consumers with shellfish allergies. Most crustacean allergen detection systems target the immunorecognition of the allergenic protein tropomyosin. However, this mode of detection may be affected by an origin-dependent protein composition. This study determined if the geographic location of capture, or aquaculture, influenced the allergenic protein profiles of Black Tiger Shrimp (Penaeus monodon), one of the most farmed and consumed shrimp species worldwide. Protein composition was analysed in shrimp from nine different locations in the Asia-Pacific by SDS-PAGE, immunoblotting, and mass spectrometry. Ten of the twelve known shrimp allergens were detected, but with considerable differences between locations. Sarcoplasmic calcium-binding protein, myosin light chain, and tropomyosin were the most abundant allergens in all locations. Hemocyanin-specific antibodies could identify up to six different isoforms, depending on the location of origin. Similarly, tropomyosin abundance varied by up to 13 times between locations. These findings suggest that allergen abundance may be related to shrimp origin and, thus, shrimp origin might directly impact the readout of commercial crustacean allergen detection kits, most of which target tropomyosin, and this should be considered in food safety assessments
The first reptilian allergen and major allergen for fish-allergic patients: Crocodile β-parvalbumin
BACKGROUND: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. METHODS: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. RESULTS: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile β-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for β-PV and epitopes predicted, explaining frequent IgE-cross-binding of β-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (β-PV as Cro p 1 and α-PV as Cro p 2). CONCLUSION: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat
Exposure to Bioaerosols during Fish Processing on Board Norwegian Fishing Trawlers
Objectives: The main objective was to gain more knowledge on exposure to bioaerosols in the processing area on board fishing trawlers.
Methods: Exposure sampling was carried out during the work shifts when processing fish in the processing area on board five deep-sea fishing trawlers (trawlers 1-5). Exposure samples were collected from 64 fishermen breathing zone and from stationary sampling stations on board five deep-sea fishing trawlers (1-5). Trawlers 2, 3, and 4 were old ships, not originally built for on board processing of the catch. Trawlers 1 and 5 were relatively new and built to accommodate processing machineries. On trawlers 1-4 round fish was produced; the head and entrails were removed before the fishes were frozen in blocks. Trawler 5 had the most extensive processing, producing fish fillets. Samples were analysed for total protein, trypsin activity, parvalbumin, and endotoxin. One side analysis of variance and Kruskal-Wallis H test were used to compare levels of exposure on the different trawlers.
Results: Personal exposure to total protein were higher on the three oldest trawlers (2, 3, and 4) compared with the two new trawlers (1 and 5). Highest activity of trypsin was detected on the four trawlers producing round fish (1-4). Parvalbumin was detected in 58% of samples from the fillet-trawler (5) compared with 13% of samples from the four trawlers producing round fish. The highest level of endotoxin was detected when using high-pressure water during cleaning machines and floors in the processing area.
Conclusions: Fishermen in the processing area on board Norwegian trawlers are exposed to airborne bioaerosols as proteins, trypsin, fish allergen parvalbumin, and endotoxin. Levels varied between trawlers and type of production
Patients Allergic to Fish Tolerate Ray Based on the Low Allergenicity of Its Parvalbumin
BACKGROUND: Clinical reactions to bony fish species are common in patients with allergy to fish and are caused by parvalbumins of the β-lineage. Cartilaginous fish such as rays and sharks contain mainly α-parvalbumins and their allergenicity is not well understood. OBJECTIVE: To investigate the allergenicity of cartilaginous fish and their α-parvalbumins in individuals allergic to bony fish. METHODS: Sensitization to cod, salmon, and ray among patients allergic to cod, salmon, or both (n = 18) was explored by prick-to-prick testing. Clinical reactivity to ray was assessed in 11 patients by food challenges or clinical workup. IgE-binding to β-parvalbumins (cod, carp, salmon, barramundi, tilapia) and α-parvalbumins (ray, shark) was determined by IgE-ELISA. Basophil activation tests and skin prick tests were performed with β-parvalbumins from cod, carp, and salmon and α-parvalbumins from ray and shark. RESULTS: Tolerance of ray was observed in 10 of 11 patients. Prick-to-prick test reactions to ray were markedly lower than to bony fish (median wheal diameter 2 mm with ray vs 11 mm with cod and salmon). IgE to α-parvalbumins was lower (median, 0.1 kU/L for ray and shark) than to β-parvalbumins (median, ≥1.65 kU/L). Furthermore, α-parvalbumins demonstrated a significantly reduced basophil activation capacity compared with β-parvalbumins (eg, ray vs cod, P < .001; n = 18). Skin prick test further demonstrated lower reactivity to α-parvalbumins compared with β-parvalbumins. CONCLUSIONS: Most patients allergic to bony fish tolerated ray, a cartilaginous fish, because of low allergenicity of its α-parvalbumin. A careful clinical workup and in vitro IgE-testing for cartilaginous fish will improve patient management and may introduce an alternative to bony fish into patients' diet
Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species
Background: Fish is a well-recognized cause of food allergy and anaphylaxis. The evolutionary and taxonomic diversity of the various consumed fish species pose a challenge in the identification and characterization of the major fish allergens critical for reliable diagnostics. Globally, fish is a rising cause of food allergy complicated by a large under-investigated variety of species as well as increasing global tourism and trade. This is the first comprehensive study on allergen profiles of heat-processed fish from Vietnam.
Objective: The aim of this study was to identify the major heat-stable allergens from frequently exported Asia-Pacific freshwater and marine fish and to characterize the major allergen parvalbumin (PV) from one of the most consumed and exported fish species from Asia, the Indian mackerel (Rastrelliger kanagurta).
Methods: Heated protein extracts from 33 fish species were separated by gel electrophoresis. PV isoforms were identified by immunoblotting utilizing 3 different PV-specific monoclonal and polyclonal antibodies and further characterized by mass spectrometry. IgE reactivity was investigated using sera from 21 patients with confirmed fish allergy.
Results: Heat-stable IgE-reactive PVs, with up to 5 isoforms per species, were identified in all 33 analysed fish species. In the Indian mackerel, 7 PV isoforms were identified by 2D-gel electrophoresis combined with mass spectrometric analyses. The amino acid sequence deduced from cDNA of the most expressed isoform showed a high identity (>90%) to PVs from 2 other mackerel species.
Conclusions and Clinical Relevance: Different PVs were identified as the major heat-stable allergens in all 33 analysed freshwater and marine fish species from Vietnam, many of which are exported world-wide and 21 species that have never been investigated before. The Indian mackerel PV represents a novel fish allergen, now officially registered as Ras k 1. Improved diagnostics for fish allergy against Asia-Pacific species should be developed with focus on PV
Variability of allergens in commercial fish extracts for skin prick testing
Background Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. Methods Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. Results The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or beta-enolase but not parvalbumin. Conclusions Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy
