166 research outputs found
Trisomy 19 ependymoma, a newly recognized genetico-histological association, including clear cell ependymoma
Ependymal tumors constitute a clinicopathologically heterogeneous group of brain tumors. They vary in regard to their age at first symptom, localization, morphology and prognosis. Genetic data also suggests heterogeneity. We define a newly recognized subset of ependymal tumors, the trisomy 19 ependymoma. Histologically, they are compact lesions characterized by a rich branched capillary network amongst which tumoral cells are regularly distributed. When containing clear cells they are called clear cell ependymoma. Most trisomy 19 ependymomas are supratentorial WHO grade III tumors of the young. Genetically, they are associated with trisomy 19, and frequently with a deletion of 13q21.31-31.2, three copies of 11q13.3-13.4, and/or deletions on chromosome 9. These altered chromosomal regions are indicative of genes and pathways involved in trisomy 19 ependymoma tumorigenesis. Recognition of this genetico-histological entity allows better understanding and dissection of ependymal tumors
Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study
Background
Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis.
Methods
We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used.
Results
In postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients.
Conclusions
Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value
Cerebellar ataxia and sensory ganglionopathy associated with light-chain myeloma.
BACKGROUND: Cerebellar ataxia with sensory ganglionopathy is a rare neurological combination that can occur in some hereditary ataxias including mitochondrial diseases and in gluten sensitivity. Individually each condition can be a classic paraneoplastic neurological syndrome. We report a patient with this combination who was diagnosed with light-chain myeloma ten years after initial presentation. CASE PRESENTATION: A 65-year-old Caucasian lady was referred to our Ataxia Clinic because of a 6-year history of progressive unsteadiness and a 2-year history of slurred speech. Past medical history included arterial hypertension. The patient was a non-smoker was not consuming alcohol excessively. There was no family history of ataxia. Neurological examination revealed prominent gaze-evoked nystagmus, heel to shin ataxia, gait ataxia, reduced reflexes and loss of vibration sensation in the legs. Cerebellar ataxia was confirmed using magnetic resonance spectroscopy of the cerebellum and sensory ganglionopathy using neurophysiological assessments including blink reflex study. A muscle biopsy that was arranged to explore the possibility of mitochondrial disease revealed amyloidosis. Urinalysis confirmed the presence of light chains. A bone marrow biopsy confirmed the diagnosis of light chain multiple myeloma. CONCLUSIONS: Whilst it could be argued that this could simply be a coincidence, the rarity of these conditions and the absence of an alternative aetiology for the neurological dysfunction argue in favour of a paraneoplastic phenomenon
Assessment of Airway Driving Pressure and Respiratory System Mechanics during Neurally Adjusted Ventilatory Assist
Cerebrospinal fluid and arterial acid-base equilibria in spontaneously breathing third-trimester pregnant women
Acid-base status in full-term pregnant women is characterised by hypocapnic alkalosis. Whether this respiratory alkalosis is primary or consequent to changes in CSF electrolytes is not clear
Extracorporeal Chloride Removal by Electrodialysis (CRe-ED): A Novel Approach to Correct Acidemia
RATIONALE:
Acidemia is a severe condition among critically ill patients. Despite lack of evidence, sodium bicarbonate is frequently used to correct pH. However, its administration is burdened by several side effects. We hypothesized that the reduction of plasma chloride concentration could be an alternative strategy to correct acidemia.
OBJECTIVES:
To evaluate feasibility, safety, and effectiveness of a novel strategy to correct acidemia through Extracorporeal Chloride Removal by Electrodialysis (CRe-ED).
METHODS:
Ten swine (6 treatments, 4 controls) were sedated, mechanically ventilated and connected to an electrodialysis extracorporeal device capable of removing selectively chloride. In random order, an arterial pH of 7.15 was induced either through reduction of ventilation (respiratory acidosis) or through lactic acid infusion (metabolic acidosis). Acidosis was subsequently sustained for 12-14 hours. In treatment pigs, soon after reaching target acidemia, electrodialysis was started in order to restore pH.
MEASUREMENTS AND MAIN RESULTS:
During respiratory acidosis, electrodialysis reduced plasma chloride concentration by 26\ub15 mEq/L within 6 hours (final pH=7.36\ub10.04). Control animals exhibited incomplete and slower compensatory response to respiratory acidosis (final pH=7.29\ub10.03, p<0.001). During metabolic acidosis, electrodialysis reduced plasma chloride concentration by 15\ub13 mEq/L within 4 hours (final pH=7.34\ub10.07). No effective compensatory response occurred in controls (final pH=7.11\ub10.08; p<0.001). No complications occurred.
CONCLUSIONS:
We described the first in-vivo application of an extracorporeal system targeted to correct severe acidemia by lowering plasma chloride concentration. The CRe-ED proved to be feasible, safe, and effective. Further studies are warranted to assess its performance in presence of impaired respiratory and renal functions
Conventional MRI-Based Structural Disconnection and Morphometric Similarity Networks and Their Clinical Correlates in Multiple Sclerosis
BACKGROUND AND OBJECTIVES: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability. METHODS: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed. Physical and cognitive disabilities were assessed with the expanded disability status scale (EDSS) and the symbol digit modalities test (SDMT), respectively. Demyelinating lesions were automatically segmented, and the corresponding masks were used to assess pairwise structural disconnection between atlas-defined brain regions based on normative tractography data. Using the Morphometric Inverse Divergence method, we computed morphometric similarity between cortical regions based on FreeSurfer surface reconstruction. Using network-based statistics (NBS) and its extension NBS-predict, we tested whether subject-level connectomes were associated with disease status, progression, clinical disability, and long-term confirmed disability progression (CDP), independently from global lesion burden and atrophy. RESULTS: We studied 461 pwMS (age = 37.2 ± 10.6 years, F/M = 324/137), corresponding to 1,235 visits (mean follow-up time = 1.9 ± 2.0 years, range = 0.1-13.3 years), and 55 HC (age = 42.4 ± 15.7 years; F/M = 25/30). Long-term clinical follow-up was available for 285 pwMS (mean follow-up time = 12.4 ± 2.8 years), 127 of whom (44.6%) exhibited CDP. At baseline, structural disconnection in pwMS was mostly centered around the thalami and cortical sensory and association hubs, while morphometric similarity was extensively disrupted (pFWE < 0.01). EDSS was related to frontothalamic disconnection (pFWE < 0.01) and disrupted morphometric similarity around the left perisylvian cortex (pFWE = 0.02), while SDMT was associated with cortico-subcortical disconnection in the left hemisphere (pFWE < 0.01). Longitudinally, both structural disconnection and morphometric similarity disruption significantly progressed (pFWE = 0.04 and pFWE < 0.01), correlating with EDSS increase (ρ = 0.07, p = 0.02 and ρ = 0.11, p < 0.001), while baseline disconnection predicted long-term CDP (accuracy = 59% [58-60], p = 0.03). DISCUSSION: Structural disconnection and morphometric similarity networks, as assessed through conventional MRI, are sensitive to MS-related brain damage and its progression. They explain disease-related clinical disability and predict its long-term evolution independently from global lesion burden and atrophy, potentially adding to established MRI measures as network-based biomarkers of disease severity and progression
Multiple system atrophy is distinguished from idiopathic Parkinson's disease bythe arginine growth hormone stimulation test
Objective: Multiple system atrophy (MSA) may be difficult to distinguish from idiopathic Parkinson’s disease (PD). Our aim
was to evaluate the accuracy of the arginine growth hormone (GH) stimulation test in distinguishing between MSA and PD in
large populations of patients.
Methods: We measured the GH response to arginine in 69 MSA (43 MSAp [parkinsonism as the main motor feature] and 26
MSAc [cerebellar features predominated]) patients, 35 PD patients, and 90 healthy control subjects. We used receiver-operating
curve analysis to establish the arginine cutoff value that best differentiated between MSA and PD.
Results: The GH response to arginine was significantly lower (p 0.01) in MSA than in either PD patients or control subjects.
At a cutoff level of 4g/L, arginine distinguished MSAp from PD with a sensitivity and specificity of 91% and MSAc from PD
with a sensitivity of 96% and specificity of 91%. The arginine test had a positive predictive value for MSA of 95%. The GH
response to arginine was not affected by disease duration or severity, MSA motor subtype, pyramidal signs, response to dopaminergic
therapy, or magnetic resonance imaging findings.
Interpretation: The GH response to arginine differentiates MSA from PD with a high diagnostic accuracy. The results suggest
an impairment of cholinergic central systems modulating GH release in MSA
PINK1 heterozygous rare variants: Prevalence, significance and phenotypic spectrum
Heterozygous rare variants in the PINK1 gene, as well as in other genes causing autosomal recessive parkinsonism, have been reported both in patients and healthy controls. Their pathogenic significance is uncertain, but they have been suggested to represent risk factors to develop Parkinson disease (PD). The few large studies that assessed the frequency of PINK1 heterozygotes in cases and controls yielded controversial results, and the phenotypic spectrum is largely unknown. We retrospectively analyzed the occurrence of PINK1 heterozygous rare variants in over 1100 sporadic and familial patients of all onset ages and in 400 controls. Twenty patients and 6 controls were heterozygous, with frequencies (1.8% vs. 1.5%) not significantly different in the two groups. Clinical features of heterozygotes were indistinguishable to those of wild-type patients, with mean disease onset 10 years later than in carriers of two mutations but worse disease progression. A meta-analysis indicated that, in PINK1 heterozygotes, the PD risk is only slightly increased with a non significant odds ratio of 1.62. These findings suggest that PINK1 heterozygous rare variants play only a minor susceptibility role in the context of a multifactorial model of PD. Hence, their significance should be kept distinct from that of homozygous/compound heterozygous mutations, that cause parkinsonism inherited in a mendelian fashion
- …
