2,259 research outputs found
Compact Microring-Based Wavelength-Selective Inline Optical Reflector
We present a novel design for a compact planar integrated optic reflector based on a microring resonator add–drop wavelength-selective filter. Good agreement is found between the theoretical expectation and the measurements of a device fabricated in optical polymer. The measured device exhibits better than 10-dB rejection for wavelengths resonant with the microring
Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light
The development of a simple, solid-state-based technology to slow the propagation of light could prove an important step in the realization of the high-bit-rate communication systems of the future. The use of coupled resonator optical waveguides (CROWs) as practical elements to slow and store light pulses is one possibility
All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators
We present an all optically tunable wavelength-selective reflector for planar lightwave technology based on coupled microring resonators. By employing the Vernier effect, we demonstrate narrow-band reflection and strong side-lobe suppression in an optical polymer device fabricated by soft lithography. Wide and simple tuning of the reflection peak using an external control beam is demonstrated
Soft lithography molding of polymer integrated optical devices: Reduction of the background residue
Soft lithography molding is a promising technique for patterning polymer integrated optical devices, however the presence of a background residue has the potential to limit the usefulness of this technique. We present the soft lithography technique for fabricating polymer waveguides. Several effects of the background residue are investigated numerically, including the modal properties of an individual waveguide, the coupling ratio of a directional coupler, and the radiation loss in a waveguide bend. Experimentally, the residue is found to be reduced through dilution of the core polymer solution. We find that the force with which the soft mold is depressed on the substrate does not appreciably affect the waveguide thickness or the residue thickness. Optical microscope images show that the residue is thinnest next to the waveguide
Soft lithography replication of polymeric microring optical resonators
We have developed a soft lithography method to replicate polymeric integrated optical devices. In this method, the master device and the molded replica are made of the same materials, allowing direct comparison. To evaluate the quality of the replication, microring optical resonators are chosen as test devices because of their sensitivity to small fabrication errors. The master devices are precisely fabricated using direct electron beam lithography. The replicas are produced by the molding technique and subsequent ultraviolet curing. Compared with the master devices, the molded devices show minimal change in both physical shape and optical performance. This correspondence indicates the merits of soft lithographic methods for fabrication of precision integrated optical devices
Lasing from a circular Bragg nanocavity with an ultra-small modal volume
We demonstrate single-mode lasing at telecommunication wavelengths from a
circular nanocavity employing a radial Bragg reflector. Ultra-small modal
volume and Sub milliwatt pump threshold level are observed for lasers with
InGaAsP quantum well active membrane. The electromagnetic field is shown to be
tightly confined within the 300nm central pillar of the cavity. The quality
factors of the resonator modal fields are estimated to be on the order of a few
thousands.Comment: 3 pages, 4 figures Submitted to AP
A General Formulation of the Source Confusion Statistics and Application to Infrared Galaxy Surveys
Source confusion has been a long-standing problem in the astronomical
history. In the previous formulation, sources are assumed to be distributed
homogeneously on the sky. This fundamental assumption is not realistic in many
applications. In this work, by making use of the point field theory, we derive
general analytic formulae for the confusion problems with arbitrary
distribution and correlation functions. As a typical example, we apply these
new formulae to the source confusion of infrared galaxies. We first calculate
the confusion statistics for power-law galaxy number counts as a test case.
When the slope of differential number counts, \gamma, is steep, the confusion
limits becomes much brighter and the probability distribution function (PDF) of
the fluctuation field is strongly distorted. Then we estimate the PDF and
confusion limits based on the realistic number count model for infrared
galaxies. The gradual flattening of the slope of the source counts makes the
clustering effect rather mild. Clustering effects result in an increase of the
limiting flux density with \sim 10%. In this case, the peak probability of the
PDF decreases up to \sim 15% and its tail becomes heavier.Comment: ApJ in press, 21 pages, 9 figures, using aastex.cls, emulateapj5.sty.
Abstract abridge
Bardeen-Petterson effect and the disk structure of the Seyfert galaxy NGC 1068
VLBA high spatial resolution observations of the disk structure of the active
galactic nucleus NGC 1068 has recently revealed that the kinematics and
geometry of this AGN is well characterized by an outer disk of H2O maser
emission having a compact milliarcsecond (parsec) scale structure, which is
encircling a thin rotating inner disk surrounding a ~10^7 M_\sun compact
mass, likely a black hole. A curious feature in this source is the occurrence
of a misalignment between the inner and outer parts of the disk, with the
galaxy's radio jet being orthogonal to the inner disk. We interpret this
peculiar configuration as due to the Bardeen-Petterson effect, a general
relativistic effect that warps an initially inclined (to the black hole
equator) viscous disk, and drives the angular momentum vector of its inner part
into alignment with the rotating black hole spin. We estimate the time-scale
for both angular momenta to get aligned as a function the spin parameter of the
Kerr black hole. We also reproduce the shape of the parsec and kiloparsec scale
jets, assuming a model in which the jet is precessing with a period and
aperture angle that decrease exponentially with time, as expected from the
Bardeen-Petterson effect.Comment: 12 pages, 3 figures, accepted for publication in The Astrophysical
Journa
Structure of Magnetic Tower Jets in Stratified Atmospheres
Based on a new approach on modeling the magnetically dominated outflows from
AGNs (Li et al. 2006), we study the propagation of magnetic tower jets in
gravitationally stratified atmospheres (such as a galaxy cluster environment)
in large scales ( tens of kpc) by performing three-dimensional
magnetohydrodynamic (MHD) simulations. We present the detailed analysis of the
MHD waves, the cylindrical radial force balance, and the collimation of
magnetic tower jets. As magnetic energy is injected into a small central volume
over a finite amount of time, the magnetic fields expand down the background
density gradient, forming a collimated jet and an expanded ``lobe'' due to the
gradually decreasing background density and pressure. Both the jet and lobes
are magnetically dominated. In addition, the injection and expansion produce a
hydrodynamic shock wave that is moving ahead of and enclosing the magnetic
tower jet. This shock can eventually break the hydrostatic equilibrium in the
ambient medium and cause a global gravitational contraction. This contraction
produces a strong compression at the head of the magnetic tower front and helps
to collimate radially to produce a slender-shaped jet. At the outer edge of the
jet, the magnetic pressure is balanced by the background (modified) gas
pressure, without any significant contribution from the hoop stress. On the
other hand, along the central axis of the jet, hoop stress is the dominant
force in shaping the central collimation of the poloidal current. The system,
which possesses a highly wound helical magnetic configuration, never quite
reaches a force-free equilibrium state though the evolution becomes much slower
at late stages. The simulations were performed without any initial
perturbations so the overall structures of the jet remain mostly axisymmetric.Comment: 9 pages, 11 figures, 1 table, accepted for publication in Ap
- …
