1,060 research outputs found
VICAR-DIGITAL image processing system
Computer program corrects various photometic, geometric and frequency response distortions in pictures. The program converts pictures to a number of elements, with each elements optical density quantized to a numerical value. The translated picture is recorded on magnetic tape in digital form for subsequent processing and enhancement by computer
Testing the effect of medical positive reinforcement training on salivary cortisol levels in bonobos and orangutans
The management of captive animals has been improved by the establishment of positive reinforcement training as a tool to facilitate interactions between caretakers and animals. In great apes, positive reinforcement training has also been used to train individuals to participate in simple medical procedures to monitor physical health. One aim of positive reinforcement training is to establish a relaxed atmosphere for situations that, without training, might be very stressful. This is especially true for simple medical procedures that can require animals to engage in behaviours that are unusual or use unfamiliar medical devices that can be upsetting. Therefore, one cannot exclude the possibility that the training itself is a source of stress. In this study, we explored the effects of medical positive reinforcement training on salivary cortisol in two groups of captive ape species, orangutans and bonobos, which were familiar to this procedure. Furthermore, we successfully biologically validated the salivary cortisol assay, which had already been validated for bonobos, for orangutans. For the biological validation, we found that cortisol levels in orangutan saliva collected during baseline conditions were lower than in samples collected during three periods that were potentially stressful for the animals. However, we did not find significant changes in salivary cortisol during medical positive reinforcement training for either bonobos or orangutans. Therefore, for bonobos and orangutans with previous exposure to medical PRT, the procedure is not stressful. Thus, medical PRT provides a helpful tool for the captive management of the two species
Population policies and education: exploring the contradictions of neo-liberal globalisation
The world is increasingly characterised by profound income, health and social inequalities (Appadurai, 2000). In recent decades development initiatives aimed at reducing these inequalities have been situated in a context of increasing globalisation with a dominant neo-liberal economic orthodoxy. This paper argues that neo-liberal globalisation contains inherent contradictions regarding choice and uniformity. This is illustrated in this paper through an exploration of the impact of neo-liberal globalisation on population policies and programmes. The dominant neo-liberal economic ideology that has influenced development over the last few decades has often led to alternative global visions being overlooked. Many current population and development debates are characterised by polarised arguments with strongly opposing aims and views. This raises the challenge of finding alternatives situated in more middle ground that both identify and promote the socially positive elements of neo-liberalism and state intervention, but also to limit their worst excesses within the population field and more broadly. This paper concludes with a discussion outling the positive nature of middle ground and other possible alternatives
Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest
The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes
Current polarity-dependent manipulation of antiferromagnetic domains
Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields. Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents. In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry. Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching
Virtual screening by high-throughput docking using hydrogen bonding constraints for targeting a protein-protein interface in M. tuberculosis
Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions
Using an updated simulation tool, we examine molecular junctions comprised of
benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance
of environmental factors and inter-electrode distance on the formation and
structure of bridged molecules. We investigate the complex relationship between
monolayer density and tip separation, finding that the formation of
multi-molecule junctions is favored at low monolayer density, while
single-molecule junctions are favored at high density. We demonstrate that tip
geometry and monolayer interactions, two factors that are often neglected in
simulation, affect the bonding geometry and tilt angle of bridged molecules. We
further show that the structures of bridged molecules at 298 and 77 K are
similar.Comment: To appear in ACS Nano, 30 pages, 5 figure
Rare copy number variation in cerebral palsy
As per publisher: published online 22 May 2013Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.Gai McMichael, Santhosh Girirajan, Andres Moreno-De-Luca, Jozef Gecz, Chloe Shard, Lam Son Nguyen, Jillian Nicholl, Catherine Gibson, Eric Haan, Evan Eichler, Christa Lese Martin and Alastair MacLenna
Managing FAIR Tribological Data Using Kadi4Mat
The ever-increasing amount of data generated from experiments and simulations in engineering sciences is relying more and more on data science applications to generate new knowledge. Comprehensive metadata descriptions and a suitable research data infrastructure are essential prerequisites for these tasks. Experimental tribology, in particular, presents some unique challenges in this regard due to the interdisciplinary nature of the field and the lack of existing standards. In this work, we demonstrate the versatility of the open source research data infrastructure Kadi4Mat by managing and producing FAIR tribological data. As a showcase example, a tribological experiment is conducted by an experimental group with a focus on comprehensiveness. The result is a FAIR data package containing all produced data as well as machine- and user-readable metadata. The close collaboration between tribologists and software developers shows a practical bottom-up approach and how such infrastructures are an essential part of our FAIR digital future
- …
