2,997 research outputs found
Partner selection in indoor-to-outdoor cooperative networks: an experimental study
In this paper, we develop a partner selection protocol for enhancing the
network lifetime in cooperative wireless networks. The case-study is the
cooperative relayed transmission from fixed indoor nodes to a common outdoor
access point. A stochastic bivariate model for the spatial distribution of the
fading parameters that govern the link performance, namely the Rician K-factor
and the path-loss, is proposed and validated by means of real channel
measurements. The partner selection protocol is based on the real-time
estimation of a function of these fading parameters, i.e., the coding gain. To
reduce the complexity of the link quality assessment, a Bayesian approach is
proposed that uses the site-specific bivariate model as a-priori information
for the coding gain estimation. This link quality estimator allows network
lifetime gains almost as if all K-factor values were known. Furthermore, it
suits IEEE 802.15.4 compliant networks as it efficiently exploits the
information acquired from the receiver signal strength indicator. Extensive
numerical results highlight the trade-off between complexity, robustness to
model mismatches and network lifetime performance. We show for instance that
infrequent updates of the site-specific model through K-factor estimation over
a subset of links are sufficient to at least double the network lifetime with
respect to existing algorithms based on path loss information only.Comment: This work has been submitted to IEEE Journal on Selected Areas in
Communications in August 201
Application of serious games to sport, health and exercise
Use of interactive entertainment has been exponentially expanded since the last decade. Throughout this 10+ year evolution there has been a concern about turning entertainment properties into serious applications, a.k.a "Serious Games". In this article we present two set of Serious Game applications, an Environment Visualising game which focuses solely on applying serious games to elite Olympic sport and another set of serious games that incorporate an in house developed proprietary input system that can detect most of the human movements which focuses on applying serious games to health and exercise
Effect of curvature on the backscattering from leaves
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii
An Energy and Performance Exploration of Network-on-Chip Architectures
In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs
On Impedance Bandwidth of Resonant Patch Antennas Implemented Using Structures with Engineered Dispersion
We consider resonant patch antennas, implemented using loaded
transmission-line networks and other exotic structures having engineered
dispersion. An analytical expression is derived for the ratio of radiation
quality factors of such antennas and conventional patch antennas loaded with
(reference) dielectrics. In the ideal case this ratio depends only on the
propagation constant and wave impedance of the structure under test, and it can
be conveniently used to study what kind of dispersion leads to improved
impedance bandwidth. We illustrate the effect of dispersion by implementing a
resonant patch antenna using a periodic network of LC elements. The analytical
results predicting enhanced impedance bandwidth compared to the reference
results are validated using a commercial circuit simulator. Discussion is
conducted on the practical limitations for the use of the proposed expression.Comment: 4 pages, 7 figure
A Theory of Radar Scattering by the Moon
A theory is described in which the moon is regarded as a "quasi-smooth" scatterer at radar frequencies. A scattered pulse is then composed of a number of individual returns each of which is provided by a single scattering area. In this manner it is possible to account for all the major features of the pulse, and the evidence in favor of the theory is presented. From a study of the measured power received at different frequencies, it is shown that the scattering area nearest to the earth is the source of a specular return, and it is then possible to obtain information about the material of which the area is composed. The electromagnetic constants are derived and their significance discussed
Attention and visual memory in visualization and computer graphics
Abstract—A fundamental goal of visualization is to produce images of data that support visual analysis, exploration, and discovery of novel insights. An important consideration during visualization design is the role of human visual perception. How we “see ” details in an image can directly impact a viewer’s efficiency and effectiveness. This paper surveys research on attention and visual perception, with a specific focus on results that have direct relevance to visualization and visual analytics. We discuss theories of low-level visual perception, then show how these findings form a foundation for more recent work on visual memory and visual attention. We conclude with a brief overview of how knowledge of visual attention and visual memory is being applied in visualization and graphics. We also discuss how challenges in visualization are motivating research in psychophysics
Key signal contributions in photothermal deflection spectroscopy
We report on key signal contributions in photothermal deflection spectroscopy
(PDS) of semiconductors at photon energies below the bandgap energy and show
how to extract the actual absorption properties from the measurement data. To
this end, we establish a rigorous computation scheme for the deflection signal
including semi-analytic raytracing to analyze the underlying physical effects.
The computation takes into account linear and nonlinear absorption processes
affecting the refractive index and thus leading to a deflection of the probe
beam. We find that beside the linear mirage effect, nonlinear absorption
mechanisms make a substantial contribution to the signal for strongly focussed
pump beams and sample materials with high two-photon absorption coefficients.
For example, the measured quadratic absorption contribution exceeds 5% at a
pump beam intensity of about in Si and at
in GaAs. In addition, our method also
includes thermal expansion effects as well as spatial gradients of the
attenuation properties. We demonstrate that these effects result in an
additional deflection contribution which substantially depends on the distance
of the photodetector from the readout point. This distance dependent
contribution enhances the surface related PDS signal up to two orders of
magnitude and may be misinterpreted as surface absorption if not corrected in
the analysis of the measurement data. We verify these findings by PDS
measurements on crystalline silicon at a wavelength of 1550 nm and provide
guidelines how to extract the actual attenuation coefficient from the PDS
signal.Comment: 10 pages, 16 figures, submitted to Journal of Applied Physiv
- …
