2,082 research outputs found
Automation of electro-hydraulic routing design using hybrid artificially-Intelligent techniques
Traditional ‘simple’ genetic algorithms are theoretically capable of solving the 3-D spatial problem represented by hydraulic and electrical harness design. However, the size of the ‘solution space’ to be searched, for even the simplest of problems can represent a computational load sufficient to limit any practical application. This research proposes a ‘key-point search’ which when used prior to the GA can successfully reduce the size of the computational task. It does this by identifying those points in the physical three dimensional space which are most likely to be useful in the final solution and producing an initial population of solutions from these points. This is shown to significantly reduce computation times to find valid solutions
1995, Spatial and temporal variability of late Neogene equatorial Pacific carbonate
High-resolution, continuous records of GRAPE wet bulk density (a carbonate proxy) from Ocean Drilling Program Leg 138 provide one the opportunity for a detailed study of eastern equatorial Pacific Ocean carbonate sedimentation during the last 6 m.y. The transect of sites drilled spans both latitude and longitude in the eastern equatorial Pacific from 90° to 110°W and from 5°S to 10°N. Two modes of variability are resolved through the use of Empirical Orthogonal Function (EOF) analysis. In the presence of large tectonic and climatic boundary condition changes over the last 6 m.y., the dominant mode of spatial variability in carbonate sedimentation is remarkably constant. The first mode accounts for over 50% of the variance in the data, and is consistent with forcing by equatorial divergence. This mode characterizes both carbonate concentration and carbonate mass accumulation rate time series. Variability in the first mode is highly coherent with insolation, indicating a strong linear relationship between equatorial Pacific car bonate sedimentation and Milankovitch variability. Frequency domain analysis indicates that the coupling to equatorial divergence in carbonate sedimentation is strongest in the precession band (19-23 k.y.) and weakest though present at lower frequencies. The second mode of variability has a consistent spatial pattern of east-west asymmetry over the past 4 m.y. only; prior to 4 Ma, a different mode of spatial variability may have been present, possibly suggesting influence by closure of the Isthmus of Panama or other tectonic changes. The second mode of variability may indicate influence by CaCO3 dissolution. The second mode of variability is not highly coherent with insolation. Comparison of the modes of carbonate variability to a 4 m.y. record of benthic δ 1 8 indicates that although overall correlation between carbonate and δ 1 8 is low, both modes of variability in carbonate sedimentation are coherent with δ 1 8 changes at some frequencies. The first mode of carbonate variability is coherent with Sites 846/849 δ 1 8 at the dominant insolation periods, and the second mode is coherent at 100 k.y. during the last 2 m.y. The coherence between carbonate sedimentation and δ 1 8 in both EOF modes suggests that multiple uncorrelated modes of variability operated within the climate system during the late Neogene
Pliocene-Pleistocene marine cyclothems, Wanganui Basin, New Zealand: a lithostratigraphic framework
The Rangitikei River valley between Mangaweka and Vinegar Hill and the surrounding Ohingaiti region in eastern Wanganui Basin contains a late Pliocene to early Pleistocene (c. 2.6-1.7 Ma), c. 1100 m thick, southward-dipping (4-9deg.), marine cyclothemic succession. Twenty sedimentary cycles occur within the succession, each of which contains coarse-grained (siliciclastic sandstone and coquina) and fine-grained (siliciclastic siltstone) units. Nineteen of the cycles are assigned to the Rangitikei Group (new). Six new formations are defined within the Rangitikei Group, and their distribution in the Ohingaiti region is represented in a new geologic map. The new formations are named: Mangarere, Tikapu, Makohine, Orangipongo, Mangaonoho, and Vinegar Hill. Each formation comprises one or more cyclothems and includes a previously described and named distinctive basal horizon. Discrete sandstones, siltstones, and coquinas within formations are assigned member status and correspond to systems tracts in sequence stratigraphic nomenclature. The members provide the link between the new formational lithostratigraphy and the sequence stratigraphy of the Rangitikei Group. Base of cycle coquina members accumulated during episodes of sediment starvation associated with stratigraphic condensation on an open marine shelf during sea-level transgressions. Siltstone members accumulated in mid-shelf environments (50-100 m water depth) during sea-level highstands, whereas the overlying sandstone members are ascribed to inner shelf and shoreface environments (0-50 m water depth) and accumulated during falling eustatic sea-level conditions. Repetitive changes in water depth of 50-100 m magnitude are consistent with a glacio-eustatic origin for the cyclothems, which correspond to an interval of Earth history when successive glaciations in the Northern Hemisphere are known to have occurred. Moreover, the chronology of the Rangitikei River section indicates that Rangitikei Group cyclothems accumulated during short duration, 41 ka cycles in continental ice volume attributed to the dominance of the Milankovitch obliquity orbital parameter.
The Ohingaiti region has simple postdepositional structure. The late Pliocene formations dip generally to the SSW between 4deg. and 9deg.. Discernible discordances of c. 1deg. between successively younger formations are attributed to synsedimentary tilting of the shelf concomitant with migration of the tectonic hingeline southward into the basin. The outcrop distribution of the Rangitikei Group is strongly influenced by this regional tilt and also by three major northeast-southwest oriented, high-angle reverse faults (Rauoterangi, Pakihikura, and Rangitikei Faults)
Conceptualizing the human use of wild edible herbs for conservation in South African communal areas
The importance of wild edible herbaceous species to resource poor households in most rural economies within savannas has been little studied. This is because most of the herbs grow in impoverished species communities and lands, often referred to as ‘marginal lands’. The aim of this paper is to conceptualize how the economics of wild edible herbs to households can be used to add value to total livelihoods and conservation within traditional communal areas of South Africa. Analysis of the economics of the consumption of wild edible herbs in Thorndale (Bushbuckridge district) of the Limpopo province is presented. The majority of households consumed wild edible herbs, averaging 15.4 kg dried weight per household per year and valued at $167 per household. The herbs were mostly harvested from uncultivated areas of farms, and rangelands. There was little correlation between household characteristics and the dependence on wild herbs for food. The local people noted a decline in the availability of the species, although not much is known about attempts to cultivate them. The only reasons attributed to the decline were nutrient poor soils and insufficient rains. With this background, developing a local strategy to sustain the species through cultivation by households was found to be feasible. A multiple-use system for the herbs, their improvement and value addition towards commercialization and increased household usage may result in wider acceptance and subsequent cultivation. Species diversity will be enhanced whilst conserving the land on which they grow. This multiple use system may include species roles in soil and water conservation
A function for binaural integration in auditory grouping and segregation in the inferior colliculus
Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different “streams” of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch
Valuation of communal area livestock benefits, rural livelihoods and related policy issues
The multiple benefits from livestock production to rural households are evaluated in Thorndale, a communal area of the Limpopo Province South Africa. Monetary values of livestock products are presented. Values from most previous studies are static (and thus outdated), as a result of conceptual and methodological shifts. The net monetary value of the direct benefits from livestock was estimated as 33 per household/annum. Policy concerns are the provision of adequate market and pricing mechanisms for communal area livestock, tailored savings, investment support, credit schemes, and infrastructure. An appropriate multipurpose benefit production model, other than a commercialised model is suggested for the sector
Reflecting on the next generation of models for community-based natural resources management
Community-based natural resource management (CBNRM) has been a pervasive paradigm in conservation circles for three decades. Despite many potentially attractive attributes it has been extensively critiqued from both ecological and sociological perspectives with respect to theory and practice (for example Leach et al. 1999; Berkes 2004; Fabricius et al. 2004; Blaikie 2006). Nonetheless, many successful examples exist, although an equal number have seemingly not met expectations. Is this because of poor implementation or rather a generally flawed model? If the criteria and conditions for success are so onerous that relatively few projects or situations are likely to qualify, what then is the value of the model? The questions thus become: how and what can we learn from the past theory and practice to develop a new generation of flexible, locally responsive and implementable CBNRM models, and what are likely to be the attributes of such models
Testing the theory of immune selection in cancers that break the rules of transplantation
Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance
A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin
Weproduced a composite depth scale and chronology for Site U1385 on the SWIberianMargin. Using log(Ca/Ti)measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopesof benthic foraminifera were correlated to a stacked d18O reference signal (LR04) to produce an oxygen isotopestratigraphy and age model.Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulationof these cycles provides a powerful tool for developing an orbitally-tuned agemodel.We tuned the U1385 recordby correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic d18O record of Site U1385,when placed on the tuned agemodel, generally agrees with other time scaleswithin their respective chronologicuncertainties.The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflectrelative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacialand interstadial climate states and decreases during glacial and stadial periods. Much of the variance in thelog(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereasthe residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti)variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can beused as a proxy for millennial-scale climate variability over the past 1.5 Ma.Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climatesover the past 1.5Ma, including glacial periods of the early Pleistocene (‘41-kyrworld’)when boundary conditionsdiffered significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressedduring interglacial stages and enhanced during glacial periods, especially when benthic d18O surpassed ~3.3–3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciatio
- …
