1,271 research outputs found
Velocity correlations in dense granular flows
Velocity fluctuations of grains flowing down a rough inclined plane are
experimentally studied. The grains at the free surface exhibit fluctuating
motions, which are correlated over few grains diameters. The characteristic
correlation length is shown to depend on the inclination of the plane and not
on the thickness of the flowing layer. This result strongly supports the idea
that dense granular flows are controlled by a characteristic length larger than
the particle diameter
Granular flow down a rough inclined plane: transition between thin and thick piles
The rheology of granular particles in an inclined plane geometry is studied
using molecular dynamics simulations. The flow--no-flow boundary is determined
for piles of varying heights over a range of inclination angles . Three
angles determine the phase diagram: , the angle of repose, is the
angle at which a flowing system comes to rest; , the maximum angle
of stability, is the inclination required to induce flow in a static system;
and is the maximum angle for which stable, steady state flow is
observed. In the stable flow region , three
flow regimes can be distinguished that depend on how close is to
: i) : Bagnold rheology, characterized by a
mean particle velocity in the direction of flow that scales as
, for a pile of height , ii)
: the slow flow regime, characterized by a linear
velocity profile with depth, and iii) : avalanche flow
characterized by a slow underlying creep motion combined with occasional free
surface events and large energy fluctuations. We also probe the physics of the
initiation and cessation of flow. The results are compared to several recent
experimental studies on chute flows and suggest that differences between
measured velocity profiles in these experiments may simply be a consequence of
how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid
Isostaticity, auxetic response, surface modes, and conformal invariance in twisted kagome lattices
Model lattices consisting of balls connected by central-force springs provide
much of our understanding of mechanical response and phonon structure of real
materials. Their stability depends critically on their coordination number .
-dimensional lattices with are at the threshold of mechanical
stability and are isostatic. Lattices with exhibit zero-frequency
"floppy" modes that provide avenues for lattice collapse. The physics of
systems as diverse as architectural structures, network glasses, randomly
packed spheres, and biopolymer networks is strongly influenced by a nearby
isostatic lattice. We explore elasticity and phonons of a special class of
two-dimensional isostatic lattices constructed by distorting the kagome
lattice. We show that the phonon structure of these lattices, characterized by
vanishing bulk moduli and thus negative Poisson ratios and auxetic elasticity,
depends sensitively on boundary conditions and on the nature of the kagome
distortions. We construct lattices that under free boundary conditions exhibit
surface floppy modes only or a combination of both surface and bulk floppy
modes; and we show that bulk floppy modes present under free boundary
conditions are also present under periodic boundary conditions but that surface
modes are not. In the the long-wavelength limit, the elastic theory of all
these lattices is a conformally invariant field theory with holographic
properties, and the surface waves are Rayleigh waves. We discuss our results in
relation to recent work on jammed systems. Our results highlight the importance
of network architecture in determining floppy-mode structure.Comment: 12 pages, 7 figure
Geometric origin of excess low-frequency vibrational modes in amorphous solids
Glasses have a large excess of low-frequency vibrational modes in comparison
with crystalline solids. We show that such a feature is a necessary consequence
of the geometry generic to weakly connected solids. In particular, we analyze
the density of states of a recently simulated system, comprised of weakly
compressed spheres at zero temperature. We account for the observed a)
constancy of the density of modes with frequency, b) appearance of a
low-frequency cutoff, and c) power-law increase of this cutoff with
compression. We predict a length scale below which vibrations are very
different from those of a continuous elastic body.Comment: 4 pages, 2 figures. Argument rewritten, identical result
Statistics of the contact network in frictional and frictionless granular packings
Simulated granular packings with different particle friction coefficient mu
are examined. The distribution of the particle-particle and particle-wall
normal and tangential contact forces P(f) are computed and compared with
existing experimental data. Here f equivalent to F/F-bar is the contact force F
normalized by the average value F-bar. P(f) exhibits exponential-like decay at
large forces, a plateau/peak near f = 1, with additional features at forces
smaller than the average that depend on mu. Computations of the force-force
spatial distribution function and the contact point radial distribution
function indicate that correlations between forces are only weakly dependent on
friction and decay rapidly beyond approximately three particle diameters.
Distributions of the particle-particle contact angles show that the contact
network is not isotropic and only weakly dependent on friction. High
force-bearing structures, or force chains, do not play a dominant role in these
three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR
Gravity-driven Dense Granular Flows
We report and analyze the results of numerical studies of dense granular
flows in two and three dimensions, using both linear damped springs and
Hertzian force laws between particles. Chute flow generically produces a
constant density profile that satisfies scaling relations suggestive of a
Bagnold grain inertia regime. The type of force law has little impact on the
behavior of the system. Bulk and surface flows differ in their failure criteria
and flow rheology, as evidenced by the change in principal stress directions
near the surface. Surface-only flows are not observed in this geometry.Comment: 4 pages, RevTeX 3.0, 4 PostScript figures (5 files) embedded with
eps
The Role of Friction in Compaction and Segregation of Granular Materials
We investigate the role of friction in compaction and segregation of granular
materials by combining Edwards' thermodynamic hypothesis with a simple
mechanical model and mean-field based geometrical calculations. Systems of
single species with large friction coefficients are found to compact less.
Binary mixtures of grains differing in frictional properties are found to
segregate at high compactivities, in contrary to granular mixtures differing in
size, which segregate at low compactivities. A phase diagram for segregation
vs. friction coefficients of the two species is generated. Finally, the
characteristics of segregation are related directly to the volume fraction
without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.
A constitutive law for dense granular flows
A continuum description of granular flows would be of considerable help in
predicting natural geophysical hazards or in designing industrial processes.
However, the constitutive equations for dry granular flows, which govern how
the material moves under shear, are still a matter of debate. One difficulty is
that grains can behave like a solid (in a sand pile), a liquid (when poured
from a silo) or a gas (when strongly agitated). For the two extreme regimes,
constitutive equations have been proposed based on kinetic theory for
collisional rapid flows, and soil mechanics for slow plastic flows. However,
the intermediate dense regime, where the granular material flows like a liquid,
still lacks a unified view and has motivated many studies over the past decade.
The main characteristics of granular liquids are: a yield criterion (a critical
shear stress below which flow is not possible) and a complex dependence on
shear rate when flowing. In this sense, granular matter shares similarities
with classical visco-plastic fluids such as Bingham fluids. Here we propose a
new constitutive relation for dense granular flows, inspired by this analogy
and recent numerical and experimental work. We then test our three-dimensional
(3D) model through experiments on granular flows on a pile between rough
sidewalls, in which a complex 3D flow pattern develops. We show that, without
any fitting parameter, the model gives quantitative predictions for the flow
shape and velocity profiles. Our results support the idea that a simple
visco-plastic approach can quantitatively capture granular flow properties, and
could serve as a basic tool for modelling more complex flows in geophysical or
industrial applications.Comment: http://www.nature.com/nature/journal/v441/n7094/abs/nature04801.htm
Microscopic elasticity of complex systems
Lecture Notes for the Erice Summer School 2005 Computer Simulations in
Condensed Matter: from Materials to Chemical Biology. Perspectives in
celebration of the 65th Birthday of Mike Klein organized by Kurt Binder,
Giovanni Ciccotti and Mauro Ferrari
Dynamic compression of foam supported plates impacted by high velocity soil
The response of back-supported buffer plates comprising a solid face sheet and foam core backing impacted by a column of high velocity particles (sand slug) is investigated via a lumped parameter model and coupled discrete/continuum simulations. The buffer plate is either resting (unattached) or attached to a rigid stationary foundation. The lumped parameter model is used to construct maps of the regimes of behaviour with axes of the ratio of the height of the sand slug to core thickness and the normalised core strength. Four regimes of behaviour are identified based on whether the core compression ends prior to the densification of the sand slug or vice versa. Coupled discrete/continuum simulations are also reported and compared with the lumped parameter model. While the model predicted regimes of behaviour are in excellent agreement with numerical simulations, the lumped parameter model is unable to predict the momentum transmitted to the supports as it neglects the role of elasticity in both the buffer plate and the sand slug. The numerical calculations show that the momentum transfer is minimised for intermediate values of the core strength when the so-called “soft-catch” mechanism is at play. In this regime the bounce-back of the sand slug is minimised which reduces the momentum transfer. For high values of the core strength, the response of the buffer plate resembles a rigid plate with nearly no impulse mitigation while at low values of core strength, a slap event occurs when the face sheet impinges against the foundation due to full densification of the foam core. This slap event results in a significant enhancement of the momentum transfer to the foundation. The results demonstrate that appropriately designed buffer plates have potential as impulse mitigators in landmine loading situations
- …
