10,153 research outputs found
Expanding the Family of Grassmannian Kernels: An Embedding Perspective
Modeling videos and image-sets as linear subspaces has proven beneficial for
many visual recognition tasks. However, it also incurs challenges arising from
the fact that linear subspaces do not obey Euclidean geometry, but lie on a
special type of Riemannian manifolds known as Grassmannian. To leverage the
techniques developed for Euclidean spaces (e.g, support vector machines) with
subspaces, several recent studies have proposed to embed the Grassmannian into
a Hilbert space by making use of a positive definite kernel. Unfortunately,
only two Grassmannian kernels are known, none of which -as we will show- is
universal, which limits their ability to approximate a target function
arbitrarily well. Here, we introduce several positive definite Grassmannian
kernels, including universal ones, and demonstrate their superiority over
previously-known kernels in various tasks, such as classification, clustering,
sparse coding and hashing
Microstructural analysis of sands with varying degrees of internal stability
Internal erosion involves the migration of particles through a geotechnical structure. Internal erosion poses a significant hazard to embankment dams and flood embankments. The fundamental mechanisms operate at the particle scale and a thorough understanding of these mechanisms can inform the filter design and specification process and reduce the hazard that internal erosion is known to pose to many engineered embankment structures. Engineers have long acknowledged the importance of the grain scale interactions, but until recently, explanations of the mechanisms have been purely hypothetical, as direct observation of the internal structure of filters was not possible. Recent research has used the discrete-element method to establish a particle-scale basis for Ke´zdi’s filter internal stability criterion. The discrete-element method can provide significant useful data on soil microstructure, so a discrete-element method model is inherently ideal. This study therefore examines a number of real sand samples with varying degrees of internal stability at the particle scale using high-resolution microcomputed tomography. The correlation between coordination number and internal stability is confirmed, with the coordination number values being significantly higher for the real material
Type Ia supernovae from exploding oxygen-neon white dwarfs
The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most
of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs
(WDs), but for many of the explosion scenarios, particularly those involving
the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch
WD), there is also a possibility of having an oxygen-neon (ONe) WD as
progenitor. We simulate detonations of ONe WDs and calculate synthetic
observables from these models. The results are compared with detonations in CO
WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic
explosion simulations of detonations in initially hydrostatic ONe WDs for a
range of masses below the Chandrasekhar mass (M Ch), followed by detailed
nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The
results are used to calculate synthetic spectra and light curves, which are
then compared with observations of SNe Ia. We also perform binary evolution
calculations to determine the number of SNe Ia involving ONe WDs relative to
the number of other promising progenitor channels. The ejecta structures of our
simulated detonations in sub-M Ch ONe WDs are similar to those from CO WDs.
There are, however, small systematic deviations in the mass fractions and the
ejecta velocities. These lead to spectral features that are systematically less
blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions
are similar to those obtained from CO models. Our binary evolution calculations
show that a significant fraction (3-10%) of potential progenitor systems should
contain an ONe WD. The comparison of our ONe models with our CO models of
comparable mass (1.2 Msun) shows that the less blueshifted spectral features
fit the observations better, although they are too bright for normal SNe Ia.Comment: 6 pages, 5 figure
Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals
Adapting behavior to changes in the environment is a crucial ability for survival but such adaptation varies widely across individuals. Here, we asked how humans alter their economic decision-making in response to emotional cues, and whether this is related to trait anxiety. Developing an emotional decision-making task for functional magnetic resonance imaging, in which gambling decisions were preceded by emotional and non-emotional primes, we assessed emotional influences on loss aversion, the tendency to overweigh potential monetary losses relative to gains. Our behavioral results revealed that only low-anxious individuals exhibited increased loss aversion under emotional conditions. This emotional modulation of decision-making was accompanied by a corresponding emotion-elicited increase in amygdala-striatal functional connectivity, which correlated with the behavioral effect across participants. Consistent with prior reports of 'neural loss aversion', both amygdala and ventral striatum tracked losses more strongly than gains, and amygdala loss aversion signals were exaggerated by emotion, suggesting a potential role for this structure in integrating value and emotion cues. Increased loss aversion and striatal-amygdala coupling induced by emotional cues may reflect the engagement of adaptive harm-avoidance mechanisms in low-anxious individuals, possibly promoting resilience to psychopathology
Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha
Stellar evolution models predict the existence of hybrid white dwarfs (WDs)
with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with
masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the
Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear
explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid
WD under the assumption that nuclear burning only occurs in carbon-rich
material. Performing hydrodynamics simulations of the explosion and detailed
nucleosynthesis post-processing calculations, we find that only 0.014 Msun of
material is ejected while the remainder of the mass stays bound. The ejecta
consist predominantly of iron-group elements, O, C, Si and S. We also calculate
synthetic observables for our model and find reasonable agreement with the
faint Type Iax SN 2008ha. This shows for the first time that deflagrations in
near-MCh WDs can in principle explain the observed diversity of Type Iax
supernovae. Leaving behind a near-MCh bound remnant opens the possibility for
recurrent explosions or a subsequent accretion-induced collapse in faint Type
Iax SNe, if further accretion episodes occur. From binary population synthesis
calculations, we find the rate of hybrid WDs approaching MCh to be on the order
of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
A Droplet State in an Interacting Two-Dimensional Electron System
It is well known that the dielectric constant of two-dimensional (2D)
electron system goes negative at low electron densities. A consequence of the
negative dielectric constant could be the formation of the droplet state. The
droplet state is a two-phase coexistence region of high density liquid and low
density "gas". In this paper, we carry out energetic calculations to study the
stability of the droplet ground state. The possible relevance of the droplet
state to recently observed 2D metal-insulator transition is also discussed.Comment: 4 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications
Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences
We propose a fully automatic method for fitting a 3D morphable model to
single face images in arbitrary pose and lighting. Our approach relies on
geometric features (edges and landmarks) and, inspired by the iterated closest
point algorithm, is based on computing hard correspondences between model
vertices and edge pixels. We demonstrate that this is superior to previous work
that uses soft correspondences to form an edge-derived cost surface that is
minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic
Using Second Life for health professional learning: informing multidisciplinary understanding
Background: The pressures of working in contemporary health care environments can result in health professionals becoming focused on their own domain. This focus, while understandable, diminishes the ability to provide holistic care for patients and clients. This multidisciplinary project sought to introduce post graduate students to the work of three other disciplines and provided them with an opportunity to develop their communication and history taking skills in the virtual world of Second Life. The participating disciplines included: Midwifery, Mental Health, Medical Radiations and Chiropractic
- …
