190 research outputs found
Recommended from our members
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems
QRTEngine: An easy solution for running online reaction time experiments using Qualtrics
Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times
Loss of the Tumor Suppressor Pten Promotes Proliferation of Drosophila melanogaster Cells In Vitro and Gives Rise to Continuous Cell Lines
In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (RasV12) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing RasV12. Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines
Employment in the Ecuadorian cut-flower industry and the risk of spontaneous abortion
<p>Abstract</p> <p>Background</p> <p>Research on the potentially adverse effects of occupational pesticide exposure on risk of spontaneous abortion (SAB) is limited, particularly among female agricultural workers residing in developing countries.</p> <p>Methods</p> <p>Reproductive histories were obtained from 217 Ecuadorian mothers participating in a study focusing on occupational pesticide exposure and children's neurobehavioral development. Only women with 2+ pregnancies were included in this study (n = 153). Gravidity, parity and frequency of SAB were compared between women with and without a history of working in the cut-flower industry in the previous 6 years. Logistic regression analysis was conducted to assess the relation between SAB and employment in the flower industry adjusting for maternal age.</p> <p>Results</p> <p>In comparison to women not working in the flower industry, women working in the flower industry were significantly younger (27 versus 32 years) and of lower gravidity (3.3 versus 4.5) and reported more pregnancy losses. A 2.6 (95% CI: 1.03-6.7) fold increase in the odds of pregnancy loss among exposed women was observed after adjusting for age. Odds of reporting an SAB increased with duration of flower employment, increasing to 3.4 (95% CI: 1.3, 8.8) among women working 4 to 6 years in the flower industry compared to women who did not work in the flower industry.</p> <p>Conclusion</p> <p>This exploratory analysis suggests a potential adverse association between employment in the cut-flower industry and SAB. Study limitations include the absence of a temporal relation between exposure and SAB, no quantification of specific pesticides, and residual confounding such as physical stressors (i.e., standing). Considering that approximately half of the Ecuadorian flower laborers are women, our results emphasize the need for an evaluating the reproductive health effects of employment in the flower industry on reproductive health in this population.</p
Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait
This article presents a stimulation control method using a uniaxial gyroscope measuring angular velocity of the shank in the sagittal plane, to control functional electrical stimulation of the triceps surae to improve push-off of stroke subjects during gait. The algorithm is triggered during each swing phase of gait when the angular velocity of the shank is relatively high. Subsequently, the start of the stance phase is detected by a change of sign of the gyroscope signal at approximately the same time as heel strike. Stimulation is triggered when the shank angle reaches a preset value since the beginning of stance. The change of angle is determined by integrating angular velocity from the moment of change of sign. The results show that the real-time reliability of stimulation control was at least 95% for four of the five stroke subjects tested, two of which were 100% reliable. For the remaining subject, the reliability was increased from 50% found during the experiment, to 99% during offline processing. Our conclusion is that a uniaxial gyroscope on the shank is a simple, more reliable alternative to the heel switch for the purpose of restoring push-off of stroke subjects during gait
Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes
Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype
Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition
MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies
Abnormal Dosage Compensation of Reporter Genes Driven by the Drosophila Glass Multiple Reporter (GMR) Enhancer-Promoter
In Drosophila melanogaster the male specific lethal (MSL) complex is required for upregulation of expression of most X-linked genes in males, thereby achieving X chromosome dosage compensation. The MSL complex is highly enriched across most active X-linked genes with a bias towards the 3′ end. Previous studies have shown that gene transcription facilitates MSL complex binding but the type of promoter did not appear to be important. We have made the surprising observation that genes driven by the glass multiple reporter (GMR) enhancer-promoter are not dosage compensated at X-linked sites. The GMR promoter is active in all cells in, and posterior to, the morphogenetic furrow of the developing eye disc. Using phiC31 integrase-mediated targeted integration, we measured expression of lacZ reporter genes driven by either the GMR or armadillo (arm) promoters at each of three X-linked sites. At all sites, the arm-lacZ reporter gene was dosage compensated but GMR-lacZ was not. We have investigated why GMR-driven genes are not dosage compensated. Earlier or constitutive expression of GMR-lacZ did not affect the level of compensation. Neither did proximity to a strong MSL binding site. However, replacement of the hsp70 minimal promoter with a minimal promoter from the X-linked 6-Phosphogluconate dehydrogenase gene did restore partial dosage compensation. Similarly, insertion of binding sites for the GAGA and DREF factors upstream of the GMR promoter led to significantly higher lacZ expression in males than females. GAGA and DREF have been implicated to play a role in dosage compensation. We conclude that the gene promoter can affect MSL complex-mediated upregulation and dosage compensation. Further, it appears that the nature of the basal promoter and the presence of binding sites for specific factors influence the ability of a gene promoter to respond to the MSL complex
Pesticide use and opportunities of exposure among farmers and their families: cross-sectional studies 1998-2006 from Hebron governorate, occupied Palestinian territory
<p>Abstract</p> <p>Background</p> <p>Adverse health effects caused by pesticide exposure have been reported in occupied Palestinian territory and the world at large. The objective of this paper is to compare patterns of pesticide use in Beit-U'mmar village, West Bank, between 1998 and 2006.</p> <p>Methods</p> <p>We studied two populations in Beit-U'mmar village, comprised of: 1) 61 male farmers and their wives in 1998 and 2) 250 male farmers in 2006. Both populations completed a structured interview, which included questions about socio-demographic factors, types of farming tasks, as well as compounds, quantities, and handling of pesticides. Using the 1998 population as a reference, we applied generalized linear regression models (GLM) and 95% confidence intervals (CI) in order to estimate prevalence differences (PD) between the two populations.</p> <p>Results</p> <p>In 1998, farmers used 47 formulated pesticides on their crops. In 2006, 16 of these pesticides were still in use, including five internationally banned compounds. There were positive changes with less use of large quantities of pesticides (>40 units/year) (PD -51; CI -0.60, -0.43), in applying the recommended dosage of pesticides (PD +0.57; CI +0.48, +0.68) and complying with the safety period (PD +0.89; CI+0.83, +0.95). Changes also included farmers' habits while applying pesticides, such as less smoking (PD -0.20; CI-0.34, -0.07) and eating at the work place (PD -0.33; CI-0.47, -0.19). No significant changes were found from 1998 to 2006 regarding use of personal protective equipment, pesticide storage, farmers' habits after applying pesticides, and in using some highly hazardous pesticides.</p> <p>Conclusions</p> <p>The results were based on two cross-sectional surveys and should be interpreted with caution due to potential validity problems. The results of the study suggest some positive changes in the handling of pesticides amongst participants in 2006, which could be due to different policy interventions and regulations that were implemented after 1998. However, farm workers in Beit -U'mmar village are still at risk of health effects because of ongoing exposure to pesticides. To the best of our knowledge, no studies on long-term changes in pesticide use have been reported from developing countries.</p
Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors
The variation in the expression patterns of the gap genes in the blastoderm of
the fruit fly Drosophila melanogaster reduces over time as a
result of cross regulation between these genes, a fact that we have demonstrated
in an accompanying article in PLoS Biology (see Manu et al.,
doi:10.1371/journal.pbio.1000049). This biologically essential process is an
example of the phenomenon known as canalization. It has been suggested that the
developmental trajectory of a wild-type organism is inherently stable, and that
canalization is a manifestation of this property. Although the role of gap genes
in the canalization process was established by correctly predicting the response
of the system to particular perturbations, the stability of the developmental
trajectory remains to be investigated. For many years, it has been speculated
that stability against perturbations during development can be described by
dynamical systems having attracting sets that drive reductions of volume in
phase space. In this paper, we show that both the reduction in variability of
gap gene expression as well as shifts in the position of posterior gap gene
domains are the result of the actions of attractors in the gap gene dynamical
system. Two biologically distinct dynamical regions exist in the early embryo,
separated by a bifurcation at 53% egg length. In the anterior region,
reduction in variation occurs because of stability induced by point attractors,
while in the posterior, the stability of the developmental trajectory arises
from a one-dimensional attracting manifold. This manifold also controls a
previously characterized anterior shift of posterior region gap domains. Our
analysis shows that the complex phenomena of canalization and pattern formation
in the Drosophila blastoderm can be understood in terms of the
qualitative features of the dynamical system. The result confirms the idea that
attractors are important for developmental stability and shows a richer variety
of dynamical attractors in developmental systems than has been previously
recognized
- …
