4,272 research outputs found
A computational analysis of under-expanded jets in the hypersonic regime
Underexpanded axisymmetric jets are studied numerically using a full Navier-Stokes solver. Emphasis has been given to supersonic and hypersonic jets in supersonic and hypersonic ambient flows, a phenomenon previously overlooked. It is demonstrated that the shear layers and shock patterns in a jet plume can be captured without complicated viscous/inviscid and subsonic/supersonic coupling schemes. In addition, a supersonic pressure relief effect has been identified for underexpanded jets in supersonic ambient flows. While it is well known that an underexpanded jet in a quiescent ambience (or subsonic ambience) contains multiple shock cells, the present study shows that because of the supersonic pressure relief effect, an underexpanded jet in a supersonic or hypersonic ambience contains only one major shock cell
Marginalising instrument systematics in HST WFC3 transit lightcurves
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations
at 1.1-1.7m probe primarily the HO absorption band at 1.4m, and
has provided low resolution transmission spectra for a wide range of
exoplanets. We present the application of marginalisation based on Gibson
(2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to
better determine important transit parameters such as R/R, important
for accurate detections of HO. We approximate the evidence, often referred
to as the marginal likelihood, for a grid of systematic models using the Akaike
Information Criterion (AIC). We then calculate the evidence-based weight
assigned to each systematic model and use the information from all tested
models to calculate the final marginalised transit parameters for both the
band-integrated, and spectroscopic lightcurves to construct the transmission
spectrum. We find that a majority of the highest weight models contain a
correction for a linear trend in time, as well as corrections related to HST
orbital phase. We additionally test the dependence on the shift in spectral
wavelength position over the course of the observations and find that
spectroscopic wavelength shifts , best describe the
associated systematic in the spectroscopic lightcurves for most targets, while
fast scan rate observations of bright targets require an additional level of
processing to produce a robust transmission spectrum. The use of
marginalisation allows for transparent interpretation and understanding of the
instrument and the impact of each systematic evaluated statistically for each
dataset, expanding the ability to make true and comprehensive comparisons
between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap
Technique for bulk Fermiology by photoemission applied to layered ruthenates
We report the Fermi surfaces of the superconductor Sr2RuO4 and the
non-superconductor Sr1.8Ca0.2RuO4 probed by bulk-sensitive high-energy
angle-resolved photoemission. It is found that there is one square-shaped
hole-like, one square-shaped electron-like and one circle-shaped electron-like
Fermi surface in both compounds. These results provide direct evidence for
nesting instability giving rise to magnetic fluctuations. Our study clarifies
that the electron correlation effects are changed with composition depending on
the individual band.Comment: 5 pages, 3 figures including 2 color figure
Recommended from our members
Languages and Learning at Key Stage 2: A Longitudinal Study Final Report
In 2006, The Open University, the University of Southampton and Canterbury Christ Church University were commissioned by the then Department for Education and Skills (DfES), now Department for Children, Schools and Families (DCSF) to conduct a three-year longitudinal study of languages learning at Key Stage 2 (KS2). The qualitative study was designed to explore provision, practice and developments over three school years between 2006/07 and 2008/09 in a sample of primary schools and explore children’s achievement in oracy and literacy, as well as the possible broader cross-curricular impact of languages learning
Direct k-space mapping of the electronic structure in an oxide-oxide interface
The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron
system of itinerant carriers, although both oxides are band insulators.
Interface ferromagnetism coexisting with superconductivity has been found and
attributed to local moments. Experimentally, it has been established that Ti 3d
electrons are confined to the interface. Using soft x-ray angle-resolved
resonant photoelectron spectroscopy we have directly mapped the interface
states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction
contributes to Fermi surface sheets, whereas a localized portion at higher
binding energies is tentatively attributed to electrons trapped by O-vacancies
in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be
excluded, the apparent absence of surface-related Fermi surface sheets could
also be fully reconciled in a recently proposed electronic reconstruction
picture where the built-in potential in the LaAlO3 is compensated by surface
O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio
Circular dichroism and bilayer splitting in the normal state of underdoped (Pb,Bi)Sr(CaY)CuO and overdoped (Pb,Bi)SrCaCuO
We report an ARPES investigation of the circular dichroism in the first
Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the
dichroism has opposite signs for bonding and antibonding components of the
bilayer-split CuO-band and is antisymmetric with respect to reflections in both
mirror planes parallel to the c-axis. Using this property of the energy and
momentum intensity distributions we prove the existence of the bilayer
splitting in the normal state of the underdoped compound and compare its value
with the splitting in overdoped sample. In agreement with previous studies the
magnitude of the interlayer coupling does not depend significantly on doping.
We also discuss possible origins of the observed dichroism.Comment: 4 RevTex pages, 4 EPS figure
Searching for Far-Ultraviolet Auroral/Dayglow Emission from HD209458b
We present recent observations from the HST-Cosmic Origins Spectrograph aimed
at characterizing the auroral emission from the extrasolar planet HD209458b. We
obtained medium-resolution (R~18-20,000) far-ultraviolet (1150-1700A) spectra
at both the Phase 0.25 and Phase 0.75 quadrature positions as well as a stellar
baseline measurement at secondary eclipse. This analysis includes a catalog of
stellar emission lines and a star-subtracted spectrum of the planet. We present
an emission model for planetary H2 emission, and compare this model to the
planetary spectrum. No unambiguously identifiable atomic or molecular features
are detected, and upper limits are presented for auroral/dayglow line
strengths. An orbital velocity cross-correlation analysis finds a statistically
significant (3.8 sigma) feature at +15 (+/- 20) km/s in the rest frame of the
planet, at 1582 A. This feature is consistent with emission from H2 B-X (2-9)
P(4) (lambda_{rest} = 1581.11 A), however the physical mechanism required to
excite this transition is unclear. We compare limits on relative line strengths
seen in the exoplanet spectrum with models of ultraviolet fluorescence to
constrain the atmospheric column density of neutral hydrogen between the star
and the planetary surface. These results support models of short period
extrasolar giant planets with weak magnetic fields and extended atomic
atmospheres.Comment: Accepted to ApJ. 12 pages, 5 figures, 4 table
The atmospheric circulation of a nine-hot Jupiter sample: probing circulation and chemistry over a wide phase space
This is the author accepted manuscript. The final version is available from the American Astronomical Society / IOP Publishing via the DOI in this record.We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the speci c system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model \grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough to be observed in transmission with high-resolution spectrographs, such as ESPRESSO on VLT, METIS on the E-ELT, or with MIRI and NIRSpec aboard JWST. We also compare theoretical emission spectra generated from our models to available Spitzer eclipse depths for each planet, and nd that the outputs from our solar-metallicity, cloud-free models generally provide a good match to many of the datasets, even without additional model tuning. Although these models are cloud-free, we can use their results to understand the chemistry and dynamics that drive cloud formation in their atmospheres.European Research Council under the European Unions Seventh Framework Program (FP7/2007-2013)NAS
High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition
We have studied the electronic structure and charge ordering (Verwey)
transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the
enhanced probing depth and the use of different surface preparations we are
able to distinguish surface and volume effects in the spectra. The pseudogap
behavior of the intrinsic spectra and its temperature dependence give evidence
for the existence of strongly bound small polarons consistent with both dc and
optical conductivity. Together with other recent structural and theoretical
results our findings support a picture in which the Verwey transition contains
elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb
interaction
- …
