2,119 research outputs found
Fabrication of comb-drive actuators for straining nanostructured suspended graphene
We report on the fabrication and characterization of an optimized comb-drive
actuator design for strain-dependent transport measurements on suspended
graphene. We fabricate devices from highly p-doped silicon using deep reactive
ion etching with a chromium mask. Crucially, we implement a gold layer to
reduce the device resistance from k to
at room temperature in order to allow for
strain-dependent transport measurements. The graphene is integrated by
mechanically transferring it directly onto the actuator using a
polymethylmethacrylate membrane. Importantly, the integrated graphene can be
nanostructured afterwards to optimize device functionality. The minimum feature
size of the structured suspended graphene is 30 nm, which allows for
interesting device concepts such as mechanically-tunable nanoconstrictions.
Finally, we characterize the fabricated devices by measuring the Raman spectrum
as well as the a mechanical resonance frequency of an integrated graphene sheet
for different strain values.Comment: 10 pages, 9 figure
3p photoabsorption of free and bound Cr, Cr⁺, Mn, and Mn⁺
A dual-laser-plasma technique has been used to measure photoabsorption by atomic Cr and Mn and their ions at photon energies between 40 and 70 eV, where the dominant absorption mechanism is excitation of the 3p subshell. No dramatic differences are observed between the absorption spectra of Mn and Mn+, and these spectra are similar to those of Mn metal and MnCl2. The spectra of Cr and Cr+ are strikingly dissimilar, the mean excitation energy being about 5 eV greater in the ion. We attribute this to strong mixing of the localized 3d6 configuration with 3d5nd Rydberg configurations, an effect that is also responsible for the anomalous appearance of the Cr spectrum with respect to those of the other iron-period elements. The absorption spectra of Cr metal and CrCl2 take forms intermediate between those of Cr and Cr+. We give spectroscopic assignments to most of the sharp absorption features of Cr+ and determine the 3p ionization thresholds from quantum-defect analysis
Biosensing platform combining label-free and labelled analysis using Bloch surface waves
Bloch surface waves (BSW) propagating at the boundary of truncated photonic crystals (1D-PC) have emerged as an attractive approach for label-free sensing in plasmon-like sensor configurations. Due to the very low losses in such dielectric thin film stacks, BSW feature very low angular resonance widths compared to the surface plasmon resonance
(SPR) case. Besides label-free operation, the large field enhancement and the absence of quenching allow utilizing BSW coupled fluorescence detection to additionally sense the presence of fluorescent labels. This approach can be adapted to the case of angularly resolved resonance detection, thus giving rise to a combined label-free / labelled biosensor
platform. It features a parallel analysis of multiple spots arranged as a one-dimensional array inside a microfluidic channel of a disposable chip. Application of such a combined biosensing approach to the detection of the Angiopoietin-2 cancer biomarker in buffer solutions is reported
Integrated impedance bridge for absolute capacitance measurements at cryogenic temperatures and finite magnetic fields
We developed an impedance bridge that operates at cryogenic temperatures
(down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This
is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed
circuit board containing the device under test and thereby parallel to the
magnetic field. The measured amplitude and phase of the output signal allows
for the separation of the total impedance into an absolute capacitance and a
resistance. Through a detailed noise characterization, we find that the best
resolution is obtained when operating the HEMT amplifier at the highest gain.
We obtained a resolution in the absolute capacitance of
6.4~aF at 77 K on a comb-drive actuator, while maintaining
a small excitation amplitude of 15~. We show the magnetic field
functionality of our impedance bridge by measuring the quantum Hall plateaus of
a top-gated hBN/graphene/hBN heterostructure at 60~mK with a probe signal of
12.8~.Comment: 7 pages, 5 figure
Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values
One Dimensional Oxygen Ordering in YBa2Cu3O(7-delta)
A model consisting of oxygen-occupied and -vacant chains is considered, with
repulsive first and second nearest-neighbor interactions V1 and V2,
respectively. The statistical mechanics and the diffraction spectrum of the
model is solved exactly and analytically with the only assumption V1 >> V2. At
temperatures T ~ V1 only a broad maximum at (1/2,0,0) is present, while for
ABS(delta - 1/2) > 1/14 at low enough T, the peak splits into two. The simple
expression for the diffraction intensity obtained for T << V1 represents in a
more compact form previous results of Khachaturyan and Morris[1],extends them
to all delta and T/V2 and leads to a good agreement with experiment. [1]
A.G.Khachaturyan and J.W.Morris, Jr., Phys.Rev.Lett. 64,76(1990)Comment: 13 pages,Revtex,3 figures available upon request but can be plotted
using simple analytical functions,CNEA-CAB 92/04
Treating treatment-resistant patients with panic disorder and agoraphobia: A randomized controlled switching trial
Background: Nonresponsiveness to therapy is generally acknowledged, but only a few studies have tested switching to psychotherapy. This study is one of the first to examine the malleability of treatment-resistant patients using acceptance and commitment therapy (ACT). Methods: This was a randomized controlled trial that included 43 patients diagnosed with primary panic disorder and/or agoraphobia (PD/A) with prior unsuccessful state-of-the-art treatment (mean number of previous sessions = 42.2). Patients were treated with an ACT manual administered by novice therapists and followed up for 6 months. They were randomized to immediate treatment (n = 33) or a 4-week waiting list (n = 10) with delayed treatment (n = 8). Treatment consisted of eight sessions, implemented twice weekly over 4 weeks. Primary outcomes were measured with the Panic and Agoraphobia Scale (PAS), the Clinical Global Impression (CGI), and the Mobility Inventory (MI). Results: At post-treatment, patients who received ACT reported significantly more improvements on the PAS and CGI (d = 0.72 and 0.89, respectively) than those who were on the waiting list, while improvement on the MI (d = 0.50) was nearly significant. Secondary outcomes were consistent with ACT theory. Follow-up assessments indicated a stable and continued improvement after treatment. The dropout rate was low (9%). Conclusions: Despite a clinically challenging sample and brief treatment administered by novice therapists, patients who received ACT reported significantly greater changes in functioning and symptomatology than those on the waiting list, with medium-to-large effect sizes that were maintained for at least 6 months. These proof-of-principle data suggest that ACT is a viable treatment option for treatment-resistant PD/A patients. Further work on switching to psychotherapy for nonresponders is clearly needed. © 2015 S. Karger AG, Basel
Photodissociation dynamics of the iodide-uracil (I-U) complex
Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I− ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I− and weak [U- H]− ion signal upon photoexcitation. The action spectra show two bands for I− and [U- H]− production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I− production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I− exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I−U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π∗ excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I− production suggest that this channel results from internal conversion to the I− ⋅ U ground state followed by evaporation of I−. This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations
- …
