326 research outputs found
Radiation Dose for Equipment in the LHC Arcs
Collisions of protons with residual gas molecules or the beam screen installed in the vacuum chamber are the main sources for the radiation dose in the LHC arcs. The dose due to proton-gas collisions depends on gas pressure, energy and intensity of the circulating beam. The dose is about equally distributed along the arc and has been calculated in previous papers. Collisions of particles with the beam screen will take place where the beam size is largest - close to focusing quadrupole magnets. For this paper the radiation doses due to particles hitting the beam screen in a quadrupole were calculated with the shower codes GEANT3.21 and FLUKA96
Beam Measurement Systems for the CERN Antiproton Decelerator (AD)
The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of these systems and their usage
Search for neutral charmless B decays at LEP
A search for rare charmless decays of \Bd and \Bs mesons has been performed in the exclusive channels \Bd_{(\mathrm s)}\ra\eta\eta, \Bd_{(\mathrm s)}\ra\eta\pio and \Bd_{(\mathrm s)}\ra\pio\pio. The data sample consisted of three million hadronic \Zo decays collected by the L3 experiment at LEP from 1991 through 1994. No candidate event has been observed and the following upper limits at 90\% confidence level on the branching ratios have been set \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\eta)<4.1\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\eta)<1.5\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\pio)<2.5\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\pio)<1.0\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\pio\pio)<6.0\times 10^{-5},\,\, \mathrm{Br}(\Bs\ra\pio\pio)<2.1\times 10^{-4}. \end{displaymath} These are the first experimental limits on \Bd\ra\eta\eta and on the \Bs neutral charmless modes
Ionic liquids at electrified interfaces
Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules
Recommended from our members
Asymmetric Bipolar Membrane for High Current Density Electrodialysis Operation with Exceptional Stability
Bipolar membranes (BPMs) enable isolated acidic/alkaline regions in electrochemical devices, facilitating optimized environments for electrochemical separations and catalysis. For economic viability, BPMs must attain stable, high current density operation with low overpotentials in a freestanding configuration. We report an asymmetric, graphene oxide (GrOx)-catalyzed BPM capable of freestanding electrodialysis operation at 1 A cm-2 with overpotentials <250 mV. Use of a thin anion-exchange layer improves water transport while maintaining near unity Faradaic efficiency for acid and base generation. Voltage stability exceeding 1100 h with an average drift of 70 μV/h at 80 mA cm-2 and 100 h with an average drift of −300 μV/h at 500 mA cm-2 and implementation in an electrodialysis stack demonstrate real-world applicability. Continuum modeling reveals that water dissociation in GrOx BPMs is both catalyzed and electric-field enhanced, where low pKa moieties on GrOx enhance local electric fields and high pKa moieties serve as active sites for surface-catalyzed water dissociation. These results establish commercially viable BPM electrodialysis and provide fundamental insight to advance design of next-generation devices
Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR
A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole
- …
