666 research outputs found
Laboratory measurements and modeling of microwave absorption by ammonia in gas mixtures applicable to giant planet atmospheres
Accurate knowledge of the microwave absorption behavior of ammonia is critical to the correct interpretation of radio astronomical and radio occultation data from the giant planets. New cavity resonator techniques developed at the Stanford Center for Radar Astronomy have allowed accurate laboratory measurements of the microwave absorptivity and refractivity spectra of gas mixtures containing trace amounts of ammonia. A parameterized version of the modified Ben-Reuven formalism of Berge and Bulkis was optimized to fit the new data. The new formalism produced by this method predicts ammonia absorptivity much more accurately than previous formalism over a significant range of conditions
Analysis of simple 2-D and 3-D metal structures subjected to fragment impact
Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated
User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings
These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included
The role of environmental perceptions in migration decision-making: evidence from both migrants and non-migrants in five developing countries
© 2016, Springer Science+Business Media New York. Research has demonstrated that, in a variety of settings, environmental factors influence migration. Yet much of the existing work examines objective indicators of environmental conditions as opposed to the environmental perceptions of potential migrants. This paper examines migration decision-making and individual perceptions of different types of environmental change (sudden vs. gradual environmental events) with a focus on five developing countries: Vietnam, Cambodia, Uganda, Nicaragua, and Peru. The survey data include both migrants and non-migrants, with the results suggesting that individual perceptions of long-term (gradual) environmental events, such as droughts, lower the likelihood of internal migration. However, sudden-onset events, such as floods, increase movement. These findings substantially improve our understanding of perceptions as related to internal migration and also suggest that a more differentiated perspective is needed on environmental migration as a form of adaptation
Recommended from our members
Scientific rationale of a Saturn probe mission
We describe the main scientific goals to be addressed by future in situ exploration of Saturn
ALMA observations of atomic carbon in z~4 dusty star-forming galaxies
We present ALMA [CI]() (rest frequency 492 GHz) observations for a
sample of 13 strongly-lensed dusty star-forming galaxies originally discovered
at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these
new data with available [CI] observations from the literature, allowing a study
of the ISM properties of extreme dusty star-forming galaxies spanning
a redshift range . Using the [CI] line as a tracer of the molecular
ISM, we find a mean molecular gas mass for SPT-DSFGs of
M. This is in tension with gas masses derived via low- CO
and dust masses; bringing the estimates into accordance requires either (a) an
elevated CO-to-H conversion factor for our sample of and a gas-to-dust ratio , or (b) an high carbon abundance . Using observations of a range of additional atomic
and molecular lines (including [CI], [CII], and multiple transitions of CO), we
use a modern Photodissociation Region code (3D-PDR) to assess the physical
conditions (including the density, UV radiation field strength, and gas
temperature) within the ISM of the DSFGs in our sample. We find that the ISM
within our DSFGs is characterised by dense gas permeated by strong UV fields.
We note that previous efforts to characterise PDR regions in DSFGs may have
significantly underestimated the density of the ISM. Combined, our analysis
suggests that the ISM of extreme dusty starbursts at high redshift consists of
dense, carbon-rich gas not directly comparable to the ISM of starbursts in the
local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA
Scientific Value of a Saturn Atmospheric Probe Mission
Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1]
The Rest-Frame Submillimeter Spectrum of High-Redshift, Dusty, Star-Forming Galaxies
We present the average rest-frame spectrum of high-redshift dusty,
star-forming galaxies from 250-770GHz. This spectrum was constructed by
stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole
Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral
features of 12CO, [CI], and H2O, we also detect several faint transitions of
13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to
characterize the typical properties of the interstellar medium of these
high-redshift starburst galaxies. We find that the 13CO brightness in these
objects is comparable to that of the only other z>2 star-forming galaxy in
which 13CO has been observed. We show that the emission from the high-critical
density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense
medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen
densities are required to reproduce the observed line ratios, and we
demonstrate that alternatives to purely collisional excitation are unlikely to
be significant for the bulk of these systems. We quantify the average emission
from several species with no individually detected transitions, and find
emission from the hydride CH and the linear molecule CCH for the first time at
high redshift, indicating that these molecules may be powerful probes of
interstellar chemistry in high-redshift systems. These observations represent
the first constraints on many molecular species with rest-frame transitions
from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable
in making effective use of ALMA in full science operations.Comment: 19 pages, 10 figures (2 in appendices); accepted for publication in
Ap
ALMA Observations of SPT-Discovered, Strongly Lensed, Dusty, Star-Forming Galaxies
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer
imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected
using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing
radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal
multiple images of each submillimeter source, separated by 1-3 arcsec,
consistent with strong lensing by intervening galaxies visible in near-IR
imaging of these sources. We describe a gravitational lens modeling procedure
that operates on the measured visibilities and incorporates
self-calibration-like antenna phase corrections as part of the model
optimization, which we use to interpret the source structure. Lens models
indicate that SPT0346-52, located at z=5.7, is one of the most luminous and
intensely star-forming sources in the universe with a lensing corrected FIR
luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200
M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens
Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11
M_sun. These observations confirm the lensing origin of these objects, allow us
to measure the their intrinsic sizes and luminosities, and demonstrate the
important role that ALMA will play in the interpretation of lensed
submillimeter sources.Comment: Accepted for publication in the Astrophysics Journa
An invitation to grieve: reconsidering critical incident responses by support teams in the school setting
This paper proposes that consideration could be given to an invitational intervention rather than an expectational intervention when support personnel respond to a critical incident in schools. Intuitively many practitioners know that it is necessary for guidance/counselling personnel to intervene in schools in and following times of trauma. Most educational authorities in Australia have mandated the formulation of a critical incident intervention plan. This paper defines the term critical incident and then outlines current intervention processes, discussing the efficacy of debriefing interventions. Recent literature suggests that even though it is accepted that a planned intervention is necessary, there is scant evidence as to the effectiveness of debriefing interventions in stemming later symptoms of post traumatic stress disorder. The authors of this paper advocate for an expressive therapy intervention that is invitational rather than expectational, arguing that not all people respond to trauma in the same way and to expect that they will need to recall and retell what has happened is most likely a dangerous assumption. A model of invitation using Howard Gardner’s (1983) multiple intelligences is proposed so that students are invited to grieve and understand emotionally what is happening to them following a critical incident
- …
