15,249 research outputs found

    Two-Loop QCD Renormalization and Anomalous Dimension of the Scalar Diquark Operator

    Full text link
    The renormalization of the scalar diquark operator and its anomalous dimension is calculated at two-loop order in QCD, enabling higher-order QCD studies of diquarks. As an application of our result, the two-loop diquark anomalous dimension in the MSˉ\bar{{\rm MS}} scheme is used to study the QCD renormalization scale dependence of diquark matrix elements of the ΔS=1\Delta S=1 effective weak Hamiltonian.Comment: Version 3 corrects an error in Table 1 and associated results. 7 pages, 4 embedded eps figure

    Implications of Hydrocarbon and Helium Gas Analyses of Springs from the Ouachita Mountains, Arkansas

    Get PDF
    One hundred and three ground water samples (predominantly springs) were analyzed for headspace light hydrocarbon gases and helium. Four of the formations (Arkansas Novaculite, Bigfork Chert, Stanley Shale, and Womble) having the highest mean methane values are the only Ouachita Mountain facies to produce petroleum or exhibit marginally commercial production. This observation suggests that the mean methane values are useful as an indication of the relative hydrocarbon content of these formations Anomalous helium values are generally associated with mapped faults

    Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum-Rules

    Full text link
    We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrid's constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of several hybrid interpolating currents, taking into account QCD condensates up to dimension-six, and extract hybrid mass predictions for all JP{0±,1±}J^P\in\{0^{\pm},\,1^{\pm}\}, as well as explore possible mixing effects with conventional quark-antiquark mesons. Within theoretical uncertainties, our results are consistent with a degeneracy between the heavy-nonstrange and heavy-strange hybrids in all JPJ^P channels. We find a similar mass hierarchy of 1+1^+, 11^{-}, and 0+0^+ states (a 1+1^{+} state lighter than essentially degenerate 11^{-} and 0+0^{+} states) in both the charm and bottom sectors, and discuss an interpretation for the 00^- states. If conventional meson mixing is present the effect is an increase in the hybrid mass prediction, and we estimate an upper bound on this effect.Comment: 24 pages, 8 figures. Mass predictions updated from previous version to reflect corrected sign error in sum rule analysis. Mixing analysis and examination of higher weight sum-rules added. To be published in JHE

    QCD Sum-Rule Bounds on the Light Quark Masses

    Get PDF
    QCD sum-rules are related to an integral of a hadronic spectral function, and hence must satisfy integral inequalities which follow from positivity of the spectral function. Development of these Holder inequalities and their application to the Laplace sum-rule for pions lead to a lower bound on the average of the non-strange 2 GeV light-quark masses in the MS-bar scheme.Comment: latex2e, 8 pages. Write-up of talk presented at MRST 200

    Gaussian Sum-Rule Analysis of Scalar Gluonium and Quark Mesons

    Full text link
    Gaussian sum-rules, which are related to a two-parameter Gaussian-weighted integral of a hadronic spectral function, are able to examine the possibility that more than one resonance makes a significant contribution to the spectral function. The Gaussian sum-rules, including instanton effects, for scalar gluonic and non-strange scalar quark currents clearly indicate a distribution of the resonance strength in their respective spectral functions. Furthermore, analysis of a two narrow resonance model leads to excellent agreement between theory and phenomenology in both channels. The scalar quark and gluonic sum-rules are remarkably consistent in their prediction of masses of approximately 1.0 GeV and 1.4 GeV within this model. Such a similarity would be expected from hadronic states which are mixtures of gluonium and quark mesons.Comment: latex2e using amsmath, 11 pages, 4 eps figures embedded in latex file. Write-up of presentation for the 2003 SUNY IT (Utica) workshop on scalar meson

    Hoelder Inequalities and QCD Sum-Rule Bounds on the Masses of Light Quarks

    Full text link
    QCD Laplace Sum-Rules must satisfy a fundamental Hoelder inequality if they are to consistently represent an integrated hadronic spectral function. The Laplace sum-rules of pion currents is shown to violate this inequality unless the uu and dd quark masses are sufficiently large, placing a lower bound on mu+mdm_u+m_d, the SU(2)-invariant combination of the light-quark masses.Comment: 3 pages, latex, write-up of talk presented at DPF 200

    Sum-Rule Inequalities and a Toy Model Paradox

    Get PDF
    Fundamental inequalities for QCD sum-rules are applied to resolve a paradox recently encountered in a sum-rule calculation. This paradox was encountered in a toy model known to be free of resonances that yields an apparent resonance using a standard sum-rule stability analysis. Application of the inequalities does not support the existence of a well defined sum-rule calculation, and shows a strong distinction from typical behaviour in QCD.Comment: 6 pages, RevTeX, figures available upon request to [email protected]
    corecore