238 research outputs found
Generation of 1.5 Million Beam Loss Threshold Values
CERN's Large Hadron Collider will store an unprecedented amount of energy in its circulating beams. Beamloss monitoring (BLM) is, therefore, critical for machine protection. It must protect against the consequences (equipment damage, quenches of superconducting magnets) of excessive beam loss. About 4000 monitors will be installed at critical loss locations. Each monitor has 384 beam abort thresholds associated; for 12 integrated loss durations (s to 83 s) and 32 energies (450GeV to 7 TeV). Depending on monitor location, the thresholds vary by orders of magnitude. For simplification, the monitors are grouped in 'families'. Monitors of one family protect similar magnets against equivalent loss scenarios. Therefore, they are given the same thresholds. The start-up calibration of the BLM system is required to be within a factor of five in accuracy; and the final accuracy should be a factor of two. Simulations (backed-up by control measurements) determine the relation between the BLM signal, the deposited energy and the critical energy deposition for damage or quench (temperature of the coil). The paper presents the strategy of determining 1.5 million threshold values
Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations
FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10096-016-2820-8) contains supplementary material, which is available to authorized users
The UA9 experimental layout
The UA9 experimental equipment was installed in the CERN-SPS in March '09
with the aim of investigating crystal assisted collimation in coasting mode.
Its basic layout comprises silicon bent crystals acting as primary
collimators mounted inside two vacuum vessels. A movable 60 cm long block of
tungsten located downstream at about 90 degrees phase advance intercepts the
deflected beam.
Scintillators, Gas Electron Multiplier chambers and other beam loss monitors
measure nuclear loss rates induced by the interaction of the beam halo in the
crystal. Roman pots are installed in the path of the deflected particles and
are equipped with a Medipix detector to reconstruct the transverse distribution
of the impinging beam. Finally UA9 takes advantage of an LHC-collimator
prototype installed close to the Roman pot to help in setting the beam
conditions and to analyze the efficiency to deflect the beam. This paper
describes in details the hardware installed to study the crystal collimation
during 2010.Comment: 15pages, 11 figure, submitted to JINS
Probing binding and occlusion of substrate in the human creatine transporter-1 by computation and mutagenesis
In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a “hold-and-pull” mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants
A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl-, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates
Extracellular loops matter:Subcellular location and function of the lysine transporter Lyp1 from Saccharomyces cerevisiae
Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ((Formula presented.) ) is much lower than (Formula presented.) , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles
Characterization of DAG binding to TRPC channels by target-dependent cis–trans isomerization of OptoDArG
Azobenzene-based photochromic lipids are valuable probes for the analysis of ion channel–lipid interactions. Rapid photoisomerization of these molecules enables the analysis of lipid gating kinetics and provides information on lipid sensing. Thermal relaxation of the metastable cis conformation to the trans conformation of azobenzene photolipids is rather slow in the dark and may be modified by ligand–protein interactions. Cis photolipid-induced changes in pure lipid membranes as visualized from the morphological response of giant unilamellar vesicles indicated that thermal cis–trans isomerization of both PhoDAG-1 and OptoDArG is essentially slow in the lipid bilayer environment. While the currents activated by cis PhoDAG remained stable upon termination of UV light exposure (dark, UV-OFF), cis OptoDArG-induced TRPC3/6/7 activity displayed a striking isoform-dependent exponential decay. The deactivation kinetics of cis OptoDArG-induced currents in the dark was sensitive to mutations in the L2 lipid coordination site of TRPC channels. We conclude that the binding of cis OptoDArG to TRPC channels promotes transition of cis OptoDArG to the trans conformation. This process is suggested to provide valuable information on DAG–ion channel interactions and may enable highly selective photopharmacological interventions
SIMS: A Hybrid Method for Rapid Conformational Analysis
Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their
structure. Describing the exact details of these conformational changes, however, remains a central challenge for
computational biology due the enormous computational requirements of the problem. This has engendered the
development of a rich variety of useful methods designed to answer specific questions at different levels of spatial,
temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally
demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured
Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both
to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm,
borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise
energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate,
analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the
abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic
conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution
for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N,
exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-
Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only
determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields,
demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems
The Environment Shapes the Inner Vestibule of LeuT
Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of similar to 15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure
Exhaustive Sampling of Docking Poses Reveals Binding Hypotheses for Propafenone Type Inhibitors of P-Glycoprotein
Overexpression of the xenotoxin transporter P-glycoprotein (P-gp) represents one major reason for the development of multidrug resistance (MDR), leading to the failure of antibiotic and cancer therapies. Inhibitors of P-gp have thus been advocated as promising candidates for overcoming the problem of MDR. However, due to lack of a high-resolution structure the concrete mode of interaction of both substrates and inhibitors is still not known. Therefore, structure-based design studies have to rely on protein homology models. In order to identify binding hypotheses for propafenone-type P-gp inhibitors, five different propafenone derivatives with known structure-activity relationship (SAR) pattern were docked into homology models of the apo and the nucleotide-bound conformation of the transporter. To circumvent the uncertainty of scoring functions, we exhaustively sampled the pose space and analyzed the poses by combining information retrieved from SAR studies with common scaffold clustering. The results suggest propafenone binding at the transmembrane helices 5, 6, 7 and 8 in both models, with the amino acid residue Y307 playing a crucial role. The identified binding site in the non-energized state is overlapping with, but not identical to, known binding areas of cyclic P-gp inhibitors and verapamil. These findings support the idea of several small binding sites forming one large binding cavity. Furthermore, the binding hypotheses for both catalytic states were analyzed and showed only small differences in their protein-ligand interaction fingerprints, which indicates only small movements of the ligand during the catalytic cycle
- …
