32,193 research outputs found

    Bone loss and human adaptation to lunar gravity

    Get PDF
    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed

    Very Long Baseline Array Imaging of Type-2 Seyferts with Double-Peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-Powered Outflows

    Full text link
    This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 Active Galactic Nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z~0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of <~10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1\sigma\ sensitivity level of ~0.15 mJy/beam, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion.Comment: 14 pages, 7 figures; ApJ in pres

    Shortfalls of Panel Unit Root Testing

    Get PDF
    Cataloged from PDF version of article.This paper shows that (i) magnitude and variation of contemporaneous correlation are important in panel unit root tests, and (ii) demeaning across the panel usually does not eliminate these problems. (C) 2003 Elsevier B.V. All rights reserved

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation called SDCP that is based on segment-level consideration sets, we add a class of constraints called product constraints (σPC), that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ESDCPκ, and compare the performance of both methods on the benchmark data sets in the literature. In our computational testing on the benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken by column generation. For a large network our 2PC procedure runs under 70 seconds to come within 0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small

    Dynamics of few-body states in a medium

    Full text link
    Strongly interacting matter such as nuclear or quark matter leads to few-body bound states and correlations of the constituents. As a consequence quantum chromodynamics has a rich phase structure with spontaneous symmetry breaking, superconductivity, condensates of different kinds. All this appears in many astrophysical scenarios. Among them is the formation of hadrns during the early stage of the Universe, the structure of a neutron star, the formation of nuclei during a supernova explosion. Some of these extreme conditions can be simulated in heavy ion colliders. To treat such a hot and dense system we use the Green function formalism of many-body theory. It turns out that a systematic Dyson expansion of the Green functions leads to modified few-body equations that are capable to describe phase transitions, condensates, cluster formation and more. These equations include self energy corrections and Pauli blocking. We apply this method to nonrelativistic and relativistic matter. The latter one is treated on the light front. Because of the medium and the inevitable truncation of space, the few-body dynamics and states depend on the thermodynamic parameters of the medium.Comment: 3 pages, 2 figures, talk presented at the 19th European Conference on Few-Body System

    Experimental Setup for Splash Erosion Monitoring—Study of Silty Loam Splash Characteristics

    Get PDF
    An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography

    A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters

    Get PDF
    We present a method to reach electric field intensity as high as 400 kV/cm in liquid argon for cathode-ground distances of several millimeters. This can be achieved by suppressing field emission from the cathode, overcoming limitations that we reported earlier
    corecore