225 research outputs found
Validation of the Japanese version of the Dementia Screening Questionnaire for Individuals with Intellectual Disabilities
Background,
Dementia in people with intellectual disabilities (IDs) is difficult to detect because of preexisting cognitive deficits. An effective screening method is required. The Dementia Screening Questionnaire for Individuals with Intellectual Disabilities (DSQIID) was developed as an observer rating tool to screen dementia in people with ID. The aim of this study was to verify the screening accuracy of the DSQIID for Japanese people with ID.
Methods
Four‐hundred ninety‐three subjects with ID participated in this study. Caregivers who had observed the participants for more than 2 years scored the Japanese version of the DSQIID (DSQIID‐J) of the participants. Three doctors examined participants directly and diagnosed dementia using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. To identify the key screening items that predict dementia, the specificities of a single and pairs of items with 100% sensitivity were evaluated relative to the dementia diagnosis.
Results
Of 493 participants, 34 were people with Down syndrome (DS), and 459 were people without DS. Seventeen participants were diagnosed with dementia. The suitable cut‐off score of the DSQIID‐J was 10/11 (sensitivity 100% and specificity 96.8%) for screening dementia. The inter‐rater reliability, test–retest reliability and internal consistency of the DSQIID‐J were excellent. Regarding key items, there was no single item with 100% sensitivity, and the best two‐item combination was the pair of ‘Cannot dress without help’ and ‘Walks slower’ (sensitivity 100% and specificity 93.5%).
Conclusions
We identified several important question items of the DSQIID‐J related to the diagnosis of dementia in people with ID. The DSQIID‐J is a useful screening tool for dementia in adults with ID
Development of a Combustor Liner Composed of Ceramic Matrix Composite (CMC
Introduction In the process of developing more efficient industrial gas turbines and turbine engines for airplanes to travel at supersonic speeds, much effort has been directed at raising the combustor outlet (turbine inlet) temperature, as is shown in the chart of the increase in gas turbine inlet temperature in The Research Institute of AMG is conducting research and development to apply these composite materials as parts for gas generators that operate at ultra-high temperatures. The research period is nine years and one month, from March 1993 to March 2002, as shown in In the AMG program, we are engaged in the R&D of application technology and processing technology for CMC parts with the aim of applying CMC materials to gas generator static parts. In this paper, we describe the results of our evaluation of CMC's applicability as a combustor liner based on an analysis of thermal stress and evaluation of a CMC liner model, and a
In Situ SR-XPS Observation of Ni-Assisted Low-Temperature Formation of Epitaxial Graphene on 3C-SiC/Si
Low-temperature (~1073 K) formation of graphene was performed on Si substrates by using an ultrathin (2 nm) Ni layer deposited on a 3C-SiC thin film heteroepitaxially grown on a Si substrate. Angle-resolved, synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS) results show that the stacking order is, from the surface to the bulk, Ni carbides(Ni(3)C/NiC(x))/graphene/Ni/Ni silicides (Ni(2)Si/NiSi)/3C-SiC/Si. In situ SR-XPS during the graphitization annealing clarified that graphene is formed during the cooling stage. We conclude that Ni silicide and Ni carbide formation play an essential role in the formation of graphene
Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution
International audienc
Passive and Active Oxidation of Si(100) by Atomic Oxygen: A Theoretical Study of Possible Reaction Mechanisms
Reaction mechanisms for oxidation of the Si(100) surface by atomic oxygen were studied with high-level quantum mechanical methods in combination with a hybrid QM/MM (Quantum mechanics/Molecular Mechanics) method. Consistent with previous experimental and theoretical results, three structures, “back-bond”, “on-dimer”, and “dimer-bridge”, are found to be the most stable initial surface products for O adsorption (and in the formation of SiO2 films, i.e., passive oxidation). All of these structures have significant diradical character. In particular, the “dimer-bridge” is a singlet diradical. Although the ground state of the separated reactants, O+Si(100), is a triplet, once the O atom makes a chemical bond with the surface, the singlet potential energy surface is the ground state. With mild activation energy, these three surface products can be interconverted, illustrating the possibility of the thermal redistribution among the initial surface products. Two channels for SiO desorption (leading to etching, i.e., active oxidation) have been found, both of which start from the back-bond structure. These are referred to as the silicon-first (SF) and oxygen-first (OF) mechanisms. Both mechanisms require an 89.8 kcal/mol desorption barrier, in good agreement with the experimental estimates of 80−90 kcal/mol. “Secondary etching” channels occurring after initial etching may account for other lower experimental desorption barriers. The calculated 52.2 kcal/mol desorption barrier for one such secondary etching channel suggests that the great variation in reported experimental barriers for active oxidation may be due to these different active oxidation channels
Overdiagnosis of a typical carcinoid tumor as an adenocarcinoma of the lung: a case report and review of the literature
Perioperative rehabilitation in operation for lung cancer (PROLUCA) – rationale and design
- …
