124 research outputs found
A review of the pharmacological and therapeutic effects of auraptene
There is a growing awareness in herbal medications as they are usually safe and devoid of significant adverse effects. Auraptene is a natural bioactive monoterpene coumarin ether and is consumed all over the world. There is growing evidence of the therapeutic benefits of auraptene. Auraptene, also known as auraptene and 7‐geranyloxycoumarin, is a bioactive monoterpene coumarin from Rutaceae family, which is isolated from Citrus aurantium (Seville orange) and Aegle marmelos (bael fruit). Auraptene is a highly pleiotropic molecule, which can modulate intracellular signaling pathways that control inflammation, cell growth, and apoptosis. It has a potential therapeutic role in the prevention and treatment of various diseases due to its anti‐inflammatory and antioxidant activities as well as its excellent safety profile. In the present article, various pharmacological and therapeutic effects of auraptene were reviewed. Different online databases using keywords such as auraptene, therapeutic effects and pharmacological effects were searched until the end of September 2018, for this purpose. Auraptene has been suggested to be effective in the treatment of a broad range of disorders including inflammatory disorders, dysentery, wounds, scars, keloids, and pain. In addition, different studies have demonstrated that auraptene possesses numerous pharmacological properties including anti‐inflammatory, anti‐oxidative, anti‐diabetic, anti‐hypertensive and anti‐cancer as well as neuroprotective effects. The present review provides a detailed survey of scientific researches regarding pharmacological properties and therapeutic effects of auraptene
Effects of training in the Morris water maze on the spatial learning acquisition and VAChT expression in male rats
"n  "n  Background and the purpose of the study: It has been well established that cholinergic pathway plays an important role in learning and memory processes. The present study was designed to evaluate the effects of Morris water maze (MWM) training on spatial memory acquisition and expression of the vesicular acetylcholine transporter (VAChT) in male rats. "n  Methods: In this study, training trials of all groups of animals were conducted in the MWM task. Rats received one training session consisting of four trials per day which continued for another four consecutive days. Controls received visible platform MWM training. The escape latency, the traveled distance and swimming speed for each rat were recorded and used to evaluate the performance of the animal during training period. For evaluation of expression of VAChT protein levels, brain tissues from animals in each experiment were obtained immediately after the last trial on the related experimental day and processed for immunohistochemistry staining and western blotting analysis. "n  Results: There was a significant difference between animals subjected to one day training and those receiving four days of training in escape latency and travel distance. There were an apparent increase in VAChT immunoreactivity in the medial septal area (MSA) and CA1 region of the hippocampus in one day and four day trained animals compared with controls (visible group). Quantitative immunostaining analysis by optical density measurements in the CA1 region and evaluation of immunopositive neurons in medial septal area of brain sections confirmed qualitative findings. Assessment of VAChT protein level expression in hippocampus by western blotting evaluation showed the same pattern of immunohistochemistry results. "n  Conclusion: Overall, results of this study reveal changes in cholinergic neuron activity in different stages of training in the MWM task. Data suggest that there is a significant level of cholinergic neuronal activity during early stages of the training especially in the hippocampus region that may contribute to the apparent increase in VAChT expression
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Physical activity impacts resting skeletal muscle myosin conformation and lowers its ATP consumption
It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.</p
Follow-up of asymptomatic adult diaphragmatic hernia: should patients with this condition undergo immediate operation? A report of two cases
Significance of Elevated Blood Metal Ion Levels in Patients with Metal-on-Metal Prostheses: An Evaluation of Oxidative Stress Markers
It is widely known that cobalt and chromium ions can enhance the production of reactive oxygen species, known to be damaging to cells by disturbing their redox status and then generating oxidative stress. The aim of the present study was to determine if increased metal ion levels induce a state of oxidative stress in patients with metal-on-metal (MM) hip arthroplasty. Results indicated that there was no significant difference in the concentration of oxidative stress markers (total antioxidants, peroxides, and nitrated proteins) in the patients with MM bearings compared to patients without prostheses. The activity antioxidant enzymes was stable (catalase and glutathione peroxidase) or slightly decreased (superoxide dismutase and heme oxygenase-1) over time. This work is the first to determine the biological effects of metal ions released from MM hip implants with regards to mid-term systemic oxidative stress and showed that the increased levels of Co and Cr ions are not associated with significant oxidative stress damage in the plasma of patients with these implants
Integrated analysis of multiple receptor tyrosine kinases identifies Axl as a therapeutic target and mediator of resistance to sorafenib in hepatocellular carcinoma.
Background: Aberrant activation of Axl is implicated in the progression of HCC. We explored biologic significance and preclinical efficacy of Axl inhibition as a therapeutic strategy in sorafenib-naïve and resistant HCC.
Methods: We evaluated Axl expression in sorafenib-naïve and resistant (SR) clones of epithelial (HuH7) and mesenchymal origin (SKHep-1) using antibody arrays and confirmed tissue expression. We tested the effect of Axl inhibition with RNA-interference and pharmacologically with R428 on a number of phenotypic assays.
Results: Axl mRNA overexpression in cell lines (n=28) and RNA-seq tissue datasets (n=373) correlated with epithelial-to-mesenchymal transition (EMT). Axl was overexpressed in HCC compared to cirrhosis and normal liver. We confirmed sorafenib-resistance to be associated with EMT and enhanced motility in both HuH7-SR and SKHep-1-SR cells documenting a 4-fold increase in Axl phosphorylation as an adaptive feature of chronic sorafenib treatment in SKHep-1-SR cells. Axl inhibition reduced motility and enhanced sensitivity to sorafenib in SKHep-1SR cells. In patients treated with sorafenib (n=40) circulating Axl levels correlated with shorter survival.
Conclusions: Suppression of Axl-dependent signaling influences the transformed phenotype in HCC cells and contributes to adaptive resistance to sorafenib, providing a pre-clinical rationale for the development of Axl inhibitors as a measure to overcome sorafenib resistance
Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA
The Enzyme-Linked Immuno-Sorbent Assay, or ELISA, is commonly utilized to quantify small concentrations of specific proteins for a large variety of purposes, ranging from medical diagnosis to environmental analysis and food safety. However, this technique requires large volumes of costly reagents and long incubation periods. The use of microfluidics permits one to specifically address these drawbacks by decreasing both the volume and the distance of diffusion inside the micro-channels. Existing microfluidic systems are limited by the necessary control of extremely low flow rates to provide sufficient time for the molecules to interact with each other by diffusion only. In this paper, we describe a new microfluidic design for the realization of parallel ELISA in stop-flow conditions. Magnetic beads were used both as a solid phase to support the formation of the reactive immune complex and to achieve a magnetic mixing inside the channels. In order to test the detection procedure, the formation of the immune complex was performed off-chip before the reactive beads were injected into the reaction chamber. Anti-streptavidin antibodies were quantified with low picomolar sensitivity (0.1\u20136.7 pM), a linear range of 2 orders of magnitude and good reproducibility. This work represents the first step toward a new platform for simple, highly effective and parallel microfluidic ELISA.Peer reviewed: YesNRC publication: Ye
- …
