336 research outputs found
Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures
The theoretical description of the thermodynamic properties of
ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale
is proposed. Their superconducting characteristics strongly depend on the
mutual orientation of the ferromagnetic layers. In addition, depending on the
transparency of S/F interfaces, the superconducting critical temperature can
exhibit four different types of dependences on the thickness of the F-layer.
The obtained results permit to give some practical recommendations for the
spin-valve effect experimental observation. In this spin-valve sandwich, we
also expect a spontaneous transition from parallel to anti-parallel
ferromagnetic moment orientation, due to the gain in the superconducting
condensation energy.Comment: 20 pages, 5 figures, submitted to PR
Critical current of 3He-A in narrow channels
The critical current Jc of superfluid 3He-A in 0.8-μm-diam channels has been measured by the observation of the pressure difference along the channels versus the mass current. During warming Jc was found to decrease by about 30% at TBA(cyl) and by another 30% at TBA; TBA(cyl) is the reduced B→A transition temperature in the narrow flow channels, with TBA(cyl)TBA=0.92 at 27.4 bars. Above TBA a second dissipative mechanism was observed at lower currents. These features are believed to be associated with the ends of the channels.Peer reviewe
Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"
It is shown how the results of Deser and Levin on the response of accelerated
detectors in anti-de Sitter space can be understood from the same general
perspective as other thermality results in spacetimes with bifurcate Killing
horizons.Comment: 5 pages, LaTe
Evidence for two-dimensional nucleation of superconductivity in MgB
According to the crystal structure of MgB and band structure
calculations quasi-two-dimensional (2D) boron planes are responsible for the
superconductivity. We report on critical fields and resistance measurements of
30 nm thick MgB films grown on MgO single crystalline substrate. A linear
temperature dependence of the parallel and perpendicular upper critical fields
indicate a 3D-like penetration of magnetic field into the sample. Resistivity
measurements, in contrast, yield a temperature dependence of fluctuation
conductivity above T which agrees with the Aslamazov-Larkin theory of
fluctuations in 2D superconductors. We consider this finding as an experimental
evidence of two-dimensional nucleation of superconductivity in MgB.Comment: 5 RevTex pages, 3 PostScript Figures ZIPed in archive Sidoren.zip.
Submitted to EuroPhys. Lett. December 3, 200
Critical temperature of superconductor/ferromagnet bilayers
Superconductor/ferromagnet bilayers are known to exhibit nontrivial
dependence of the critical temperature T_c on the thickness d_f of the
ferromagnetic layer. We develop a general method for investigation of T_c as a
function of the bilayer's parameters. It is shown that interference of
quasiparticles makes T_c(d_f) a nonmonotonic function. The results are in good
agreement with experiment. Our method also applies to multilayered structures.Comment: 4 pages, 2 EPS figures; the style file jetpl.cls is included. Version
2: typos correcte
On the scalar sector of the covariant graviton two-point function in de Sitter spacetime
We examine the scalar sector of the covariant graviton two-point function in
de Sitter spacetime. This sector consists of the pure-trace part and another
part described by a scalar field. We show that it does not contribute to
two-point functions of gauge-invariant quantities. We also demonstrate that the
long-distance growth present in some gauges is absent in this sector for a wide
range of gauge parameters.Comment: 15 pages, no figures, LaTeX, considerably shortene
Theoretical description of the ferromagnetic -junctions near the critical temperature
The theory of ferromagnetic Pi-junction near the critical temperature is
presented. It is demonstrated that in the dirty limit the modified Usadel
equation adequately describes the proximity effect in ferromagnets. To provide
the description of an experimentally relevant situation, oscillations of the
Josephson critical current are calculated as a function of ferromagnetic layer
thickness for different transparencies of the superconductor-ferromagnet
interfaces.Comment: 12 pages, 4 figures, submitted to Phys. Rev.
The Generalized Hartle-Hawking Initial State: Quantum Field Theory on Einstein Conifolds
Recent arguments have indicated that the sum over histories formulation of
quantum amplitudes for gravity should include sums over conifolds, a set of
histories with more general topology than that of manifolds. This paper
addresses the consequences of conifold histories in gravitational functional
integrals that also include scalar fields. This study will be carried out
explicitly for the generalized Hartle-Hawking initial state, that is the
Hartle-Hawking initial state generalized to a sum over conifolds. In the
perturbative limit of the semiclassical approximation to the generalized
Hartle-Hawking state, one finds that quantum field theory on Einstein conifolds
is recovered. In particular, the quantum field theory of a scalar field on de
Sitter spacetime with spatial topology is derived from the generalized
Hartle-Hawking initial state in this approximation. This derivation is carried
out for a scalar field of arbitrary mass and scalar curvature coupling.
Additionally, the generalized Hartle-Hawking boundary condition produces a
state that is not identical to but corresponds to the Bunch-Davies vacuum on
de Sitter spacetime. This result cannot be obtained from the original
Hartle-Hawking state formulated as a sum over manifolds as there is no Einstein
manifold with round boundary.Comment: Revtex 3, 31 pages, 4 epsf figure
- …
