362 research outputs found
Micro-fading spectrometry: investigating the wavelength specificity of fading
A modified microfading spectrometer incorporating a linear variable filter is used to investigate the wavelength dependence of fading of traditional watercolour pigments, dosimeters and fading standards at a higher spectral resolution and/or sampling than had previously been attempted. While the wavelength dependence of photochemical damage was largely found to correlate well with the absorption spectra of each material, exceptions were found in the case of Prussian blue and Prussian green pigments (the latter includes Prussian blue), for which an anti-correlation between the spectral colour change and the absorption spectrum was found
Constraints on the Ultra High Energy Photon flux using inclined showers from the Haverah Park array
We describe a method to analyse inclined air showers produced by ultra high
energy cosmic rays using an analytical description of the muon densities. We
report the results obtained using data from inclined events
(60^{\circ}<\theta<80^{\circ}) recorded by the Haverah Park shower detector for
energies above 10^19 eV. Using mass independent knowledge of the UHECR spectrum
obtained from vertical air shower measurements and comparing the expected
horizontal shower rate to the reported measurements we show that above 10^19 eV
less than 48 % of the primary cosmic rays can be photons at the 95 % confidence
level and above 4 X 10^19 eV less than 50 % of the cosmic rays can be photonic
at the same confidence level. These limits place important constraints on some
models of the origin of ultra high-energy cosmic rays.Comment: 45 pages, 25 figure
Universal neural field computation
Turing machines and G\"odel numbers are important pillars of the theory of
computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a G\"odel encoding of its
symbolic repertoire and generalized shifts. The resulting nonlinear dynamical
automaton (NDA) is a piecewise affine-linear map acting on the unit square that
is partitioned into rectangular domains. Instead of looking at point dynamics
in phase space, we then consider functional dynamics of probability
distributions functions (p.d.f.s) over phase space. This is generally described
by a Frobenius-Perron integral transformation that can be regarded as a neural
field equation over the unit square as feature space of a dynamic field theory
(DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with
rectangular support are mapped onto uniform p.d.f.s with rectangular support,
again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with
arXiv:1204.546
Neutrino Detection with Inclined Air Showers
The possibilities of detecting high energy neutrinos through inclined showers
produced in the atmosphere are addressed with an emphasis on the detection of
air showers by arrays of particle detectors. Rates of inclined showers produced
by both down-going neutrino interactions and by up-coming decays from
earth-skimming neutrinos as a function of shower energy are calculated with
analytical methods using two sample neutrino fluxes with different spectral
indices. The relative contributions from different flavors and charged, neutral
current and resonant interactions are compared for down-going neutrinos
interacting in the atmosphere. No detailed description of detectors is
attempted but rough energy thresholds are implemented to establish the ranges
of energies which are more suitable for neutrino detection through inclined
showers. Down-going and up-coming rates are compared.Comment: Submitted to New Journal of Physic
Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn's disease (METRIC): a multicentre trial
Magnetic resonance enterography (MRE) and ultrasound are used to image Crohn's disease, but their comparative accuracy for assessing disease extent and activity is not known with certainty. Therefore, we did a multicentre trial to address this issue. We recruited patients from eight UK hospitals. Eligible patients were 16 years or older, with newly diagnosed Crohn's disease or with established disease and suspected relapse. Consecutive patients had MRE and ultrasound in addition to standard investigations. Discrepancy between MRE and ultrasound for the presence of small bowel disease triggered an additional investigation, if not already available. The primary outcome was difference in per-patient sensitivity for small bowel disease extent (correct identification and segmental localisation) against a construct reference standard (panel diagnosis). This trial is registered with the International Standard Randomised Controlled Trial, number ISRCTN03982913, and has been completed. 284 patients completed the trial (133 in the newly diagnosed group, 151 in the relapse group). Based on the reference standard, 233 (82%) patients had small bowel Crohn's disease. The sensitivity of MRE for small bowel disease extent (80% [95% CI 72-86]) and presence (97% [91-99]) were significantly greater than that of ultrasound (70% [62-78] for disease extent, 92% [84-96] for disease presence); a 10% (95% CI 1-18; p=0·027) difference for extent, and 5% (1-9; p=0·025) difference for presence. The specificity of MRE for small bowel disease extent (95% [85-98]) was significantly greater than that of ultrasound (81% [64-91]); a difference of 14% (1-27; p=0·039). The specificity for small bowel disease presence was 96% (95% CI 86-99) with MRE and 84% (65-94) with ultrasound (difference 12% [0-25]; p=0·054). There were no serious adverse events. Both MRE and ultrasound have high sensitivity for detecting small bowel disease presence and both are valid first-line investigations, and viable alternatives to ileocolonoscopy. However, in a national health service setting, MRE is generally the preferred radiological investigation when available because its sensitivity and specificity exceed ultrasound significantly. National Institute of Health and Research Health Technology Assessment. [Abstract copyright: Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Arthroscopic Iliac Crest Bone Graft Augmentation Using All-Suture Anchors for Shoulder Instability Caused by Glenoid Bone Loss.
Augmentation of the anterior glenoid with bone graft is an established treatment for recurrent anterior instability due to critical glenoid bone loss. Both open and arthroscopic techniques have been described. Fixation with metal screws through an open approach is the most common technique, but the risk of metal screw-related complications remains a concern. A variety of arthroscopic techniques using suspensory fixation or suture anchors have been described in the literature. However, they all require a posterior incision to insert a targeting device or to manage sutures. We describe a technique for arthroscopic bone grafting of the anterior glenoid via a purely anterior approach with 2 linked knotless suture anchors, thereby avoiding posterior suture management and glenoid metalwork complications
Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration
Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.
PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV
Recommended from our members
CT methods for measuring glenoid bone loss are inaccurate, and not reproducible or interchangeable.
AIMS: Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered "critical" requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. METHODS: Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. RESULTS: At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. CONCLUSION: No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable
- …
