2,347 research outputs found

    High-Dimensional Inference with the generalized Hopfield Model: Principal Component Analysis and Corrections

    Get PDF
    We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that Maximum Lik elihood inference is deeply related to Principal Component Analysis when the amp litude of the pattern components, xi, is negligible compared to N^1/2. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in xi/N^1/2. We stress that it is important to generalize the Hopfield model and include both attractive and repulsive patterns, to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size, N and of the amplitude, xi. The inference approach is illustrated on synthetic and biological data.Comment: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics (2011) to appea

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    On the performance of algorithms for the minimization of 1\ell_1-penalized functionals

    Full text link
    The problem of assessing the performance of algorithms used for the minimization of an 1\ell_1-penalized least-squares functional, for a range of penalty parameters, is investigated. A criterion that uses the idea of `approximation isochrones' is introduced. Five different iterative minimization algorithms are tested and compared, as well as two warm-start strategies. Both well-conditioned and ill-conditioned problems are used in the comparison, and the contrast between these two categories is highlighted.Comment: 18 pages, 10 figures; v3: expanded version with an additional synthetic test problem

    Implicitly Constrained Semi-Supervised Least Squares Classification

    Full text link
    We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. We show this approach can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a certain way, our method never leads to performance worse than the supervised classifier. Experimental results corroborate this theoretical result in the multidimensional case on benchmark datasets, also in terms of the error rate.Comment: 12 pages, 2 figures, 1 table. The Fourteenth International Symposium on Intelligent Data Analysis (2015), Saint-Etienne, Franc

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    A typical reconstruction limit of compressed sensing based on Lp-norm minimization

    Full text link
    We consider the problem of reconstructing an NN-dimensional continuous vector \bx from PP constraints which are generated by its linear transformation under the assumption that the number of non-zero elements of \bx is typically limited to ρN\rho N (0ρ10\le \rho \le 1). Problems of this type can be solved by minimizing a cost function with respect to the LpL_p-norm ||\bx||_p=\lim_{\epsilon \to +0}\sum_{i=1}^N |x_i|^{p+\epsilon}, subject to the constraints under an appropriate condition. For several pp, we assess a typical case limit αc(ρ)\alpha_c(\rho), which represents a critical relation between α=P/N\alpha=P/N and ρ\rho for successfully reconstructing the original vector by minimization for typical situations in the limit N,PN,P \to \infty with keeping α\alpha finite, utilizing the replica method. For p=1p=1, αc(ρ)\alpha_c(\rho) is considerably smaller than its worst case counterpart, which has been rigorously derived by existing literature of information theory.Comment: 12 pages, 2 figure

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples
    corecore