20,045 research outputs found

    The Implementation of Flipped Classroom in Efl Class: a Taiwan Case Study

    Get PDF
    This article reports on a case study designed to examine the implementation of flipped classroom in the EFL classroom in Taiwan.  In addition, students' perception of flipped classroom was also investigated. Sixty-one senior high school students participated in this study; data were gathered from students' English midterm exam score and questionnaire. The data then were quantitatively analyzed by using T-test and descriptive statistics. The results show that students' English proficiency in flipped classroom was not significantly different with students in traditional classroom. However, the results reveal that students' perception of flipped classroom were generally favorable. Students' contended that flipped classroom enhanced their motivation in learning English, as they liked the self-pace through the course and they stated that flipped classroom gave them more class time to practice English. The results presented here may facilitate improvements in the implementation of flipped classroom in EFL class. Furthermore, suggestions for further research are also presented

    An interpretation and solution of ill-conditioned linear equations

    Get PDF
    Data insufficiency, poorly conditioned matrices and singularities in equations occur regularly in complex optimization, correlation, and interdisciplinary model studies. This work concerns itself with two methods of obtaining certain physically realistic solutions to ill-conditioned or singular algebraic systems of linear equations arising from such studies. Two efficient computational solution procedures that generally lead to locally unique solutions are presented when there is insufficient data to completely define the model, or a least-squares error formulation of this system results in an ill-conditioned system of equations. If it is assumed that a reasonable estimate of the uncertain data is available in both cases cited above, then we shall show how to obtain realistic solutions efficiently, in spite of the insufficiency of independent data. The proposed methods of solution are more efficient than singular-value decomposition for dealing with such systems, since they do not require solutions for all the non-zero eigenvalues of the coefficient matrix

    Interface roughness effects on transport in tunnel structures

    Get PDF
    Direct simulations of interface roughness effects on transport properties of tunnel structures are performed using the planar supercell stack method. The method allows for the inclusion of realistic three-dimensional rough interfacial geometries in transport calculations. For double barrier resonant tunneling structures, we used our method to analyze the effect of roughness at each of the four interfaces, and to test for sensitivity of transport properties to island size and height. Our simulations yields the following conclusions: (1) We find that scattering of off-resonance states into on-resonance states provides the dominant contribution to interface roughness assisted tunneling. Analyses of scattering strength sensitivity to interface layer configurations reveals preferential scattering into Delta k parallel to approximate to 2 pi/lambda states, where lambda is the island size. (2) We find that roughness at interfaces adjacent to the quantum well can cause lateral localization of wave functions, which increases with island size and depth. Lateral localization can result in the broadening and shifting of transmission resonances, and the introduction of preferential transmission paths. In structures with wide and tall islands, it is possible to find localization over "islands" as well as localization over "oceans." (3) The leading rough interface is the strongest off-resonance scatterer, while rough interfaces adjacent to quantum well are the strongest on-resonance scatterers. The trailing interface is the weakest scatterer

    Modeling Light-Extraction Characteristics of Packaged Light-Emitting Diodes

    Get PDF
    We employ a Monte Carlo ray-tracing technique to model light-extraction characteristics of light-emitting diodes. By relaxing restrictive assumptions on photon traversal history, our method improves upon available analytical models for estimating light-extraction efficiencies from bare LED chips, and enhances modeling capabilities by realistically treating the various processes which photons can encounter in a packaged LED. Our method is not only capable of calculating extraction efficiencies, but can also provide extensive statistical information on photon extraction processes, and predict LED spatial emission characteristics

    Description of bulk inversion asymmetry in the effective-bond-orbital model

    Get PDF
    We have extended the effective-bond-orbital model (EBOM) method [Y. C. Chang, Phys. Rev. B 37, 8215 (1988)] to include the effects of the bulk inversion asymmetry (BIA) present in zinc blendes. This is accomplished without adding to the number of basis states or extending the range of interaction. We have also investigated a variant form of the EBOM proposed in the original formulation that offers improved zone-center behavior, but may also generate spurious solutions in heterostructure calculations due to poor description of bulk zone-boundary band structure. We offer suggestions for avoiding this problem so that this variant form of EBOM may be used safely. In general, we find that the addition of BIA effects in EBOM results in improved descriptions of zone-center band structure, but also in a loss of accuracy far from the Brillouin-zone center. We illustrate the use of the BIA extension with band-structure calculations for bulk GaSb. We show that the spin splitting predicted by the extended EBOM method for an AlSb/GaSb superlattice is in good agreement with k·p calculations that include BIA effects

    Interface Roughness Effects in Ultra-Thin Tunneling Oxides

    Get PDF
    Advanced MOSFET for ULSI and novel silicon-based devices require the use of ultrathin tunneling oxides where non-uniformity is often present. We report on our theoretical study of how tunneling properties of ultra-thin oxides are affected by roughness at the silicon/oxide interface. The effect of rough interfacial topography is accounted for by using the Planar Supercell Stack Method (PSSM) which can accurately and efficiently compute scattering properties of 3D supercell structures. Our results indicate that while interface roughness effects can be substantial in the direct tunneling regime, they are less important in the Fowler-Nordheim regime

    Chiral Anomaly and Index Theorem on a finite lattice

    Full text link
    The condition for a lattice Dirac operator D to reproduce correct chiral anomaly at each site of a finite lattice for smooth background gauge fields is that D possesses exact zero modes satisfying the Atiyah-Singer index theorem. This is also the necessary condition for D to have correct fermion determinant (ratio) which plays the important role of incorporating dynamical fermions in the functional integral.Comment: LATTICE99(chiral fermion), 3 pages, Latex, espcrc2.st

    Theory of antiferromagnetism in the electron-doped cuprate superconductors

    Full text link
    On the basis of the Hubbard model, we present the formulation of antiferromagnetism in electron-doped cuprates using the fluctuation-exchange approach. Taking into account the spin fluctuations in combination with the impurity scattering effect due to the randomly distributed dopant-atoms, we investigate the magnetic properties of the system. It is shown that the antiferromagnetic transition temperature, the onset temperature of the pseudogap formation, the single particle spectral density, and the staggered magnetization obtained by the present approach are in very good agreement with the experimental results. The distribution function in momentum space at very low temperature is observed to differ significantly from that of the Fermi liquid. Also, we find zero-energy peak in the density of states (DOS) of the antiferromagnetic phase. This DOS peak is sharp in the low doping regime, and disappears near the optimal doping where the AF order becomes weak.Comment: 12 pages, 19 figure
    corecore