1,788 research outputs found

    A theoretical framework for combining techniques that probe the link between galaxies and dark matter

    Full text link
    We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy despite the potential of such combinations to elucidate the galaxy-dark matter connection, to constrain cosmological parameters, and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. In a companion paper, we demonstrate that the model presented here provides an excellent fit to galaxy-galaxy lensing, galaxy clustering, and stellar mass functions measured in the COSMOS survey from z=0.2 to z=1.0. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance on each of the three probes. Finally, we analyze and discuss how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate the various features of the observed galaxy stellar mass function (low-mass slope, plateau, knee, and high-mass cut-off) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed plateau feature in the stellar mass function at Mstellar~2x10^10 Msun is due to the transition that occurs in the stellar-to-halo mass relation at Mhalo ~ 10^12 Msun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.Comment: 21 pages. Accepted to Ap

    Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters

    Full text link
    We place constraints on the average density (Omega_m) and clustering amplitude (sigma_8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct non-linear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w_p and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Omega_m or sigma_8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, even though this technique does not use abundance information. Using w_p and M/N alone, we find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data, these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All errors are 1-sigma. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap

    K-ATP channel gene expression is induced by urocortin and mediates its cardioprotective effect

    Get PDF
    Background-Urocortin is a novel cardioprotective agent that can protect cardiac myocytes from the damaging effects of ischemia/reperfusion both in culture and in the intact heart and is effective when given at reperfusion.Methods and Results-We have analyzed global changes in gone expression in cardiac myocytes after urocortin treatment using gene chip technology. We report that urocortin specifically induces enhanced expression of the Kir 6.1 cardiac potassium channel subunit. On the basis of this finding, we showed that the cardioprotective effect of urocortin both in isolated cardiac cells and in the intact heart is specifically blocked by both generalized and mitochondrial-specific K-ATP channel blockers, whereas the cardioprotective effect of cardiotrophin-1 is unaffected. Conversely, inhibiting the Kir 6.1 channel subunit greatly enhances cardiac cell death after ischemia.Conclusions-This is, to our knowledge, the first report of the altered expression of a K-ATP. channel subunit induced by a cardioprotective agent and demonstrates that K-ATP, channel opening is essential for the effect of this novel cardioprotective agent

    Impact of Cluster Physics on the Sunyaev-Zel'dovich Power Spectrum

    Full text link
    We use an analytic model to investigate the theoretical uncertainty on the thermal Sunyaev-Zel'dovich (SZ) power spectrum due to astrophysical uncertainties in the thermal structure of the intracluster medium. Our model accounts for star formation and energy feedback (from supernovae and active galactic nuclei) as well as radially dependent non-thermal pressure support due to random gas motions, the latter calibrated by recent hydrodynamical simulations. We compare the model against X-ray observations of low redshift clusters, finding excellent agreement with observed pressure profiles. Varying the levels of feedback and non-thermal pressure support can significantly change both the amplitude and shape of the thermal SZ power spectrum. Increasing the feedback suppresses power at small angular scales, shifting the peak of the power spectrum to lower ell. On the other hand, increasing the non-thermal pressure support has the opposite effect, significantly reducing power at large angular scales. In general, including non-thermal pressure at the level measured in simulations has a large effect on the power spectrum, reducing the amplitude by 50% at angular scales of a few arcminutes compared to a model without a non-thermal component. Our results demonstrate that measurements of the shape of the power spectrum can reveal useful information on important physical processes in groups and clusters, especially at high-redshift where there exists little observational data. Comparing with the recent South Pole Telescope measurements of the small-scale cosmic microwave background power spectrum, we find our model reduces the tension between the values of sigma_8 measured from the SZ power spectrum and from cluster abundances.Comment: 15 Pages, 9 Figures, updated to match version accepted by Ap

    Modeling of weak lensing statistics. I. Power spectrum and bispectrum

    Full text link
    We investigate the performance of an analytic model of the 3D matter distribution, which combines perturbation theory with halo models, for weak-lensing statistics. We compare our predictions for the weak-lensing convergence power spectrum and bispectrum with numerical simulations and fitting formulas proposed in previous works. We find that this model provides better agreement with simulations than published fitting formulas. This shows that building on systematic and physically motivated models is a promising approach. Moreover, this makes explicit the link between the weak-lensing statistics and the underlying properties of the 3D matter distribution, as a function of scale \ell. Thus, we obtain the contributions to the lensing power spectrum and bispectrum that arise from perturbative terms (complete up to one-loop) and nonperturbative terms (e.g., "1-halo" term). Finally, we show that this approach recovers the dependence on cosmology (for realistic scenarios).Comment: 14 page

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Combining perturbation theories with halo models

    Full text link
    We investigate the building of unified models that can predict the matter-density power spectrum and the two-point correlation function from very large to small scales, being consistent with perturbation theory at low kk and with halo models at high kk. We use a Lagrangian framework to re-interpret the halo model and to decompose the power spectrum into "2-halo" and "1-halo" contributions, related to "perturbative" and "non-perturbative" terms. We describe a simple implementation of this model and present a detailed comparison with numerical simulations, from k0.02k \sim 0.02 up to 100h100 hMpc1^{-1}, and from x0.02x \sim 0.02 up to 150h1150 h^{-1}Mpc. We show that the 1-halo contribution contains a counterterm that ensures a k2k^2 tail at low kk and is important not to spoil the predictions on the scales probed by baryon acoustic oscillations, k0.02k \sim 0.02 to 0.3h0.3 hMpc1^{-1}. On the other hand, we show that standard perturbation theory is inadequate for the 2-halo contribution, because higher order terms grow too fast at high kk, so that resummation schemes must be used. We describe a simple implementation, based on a 1-loop "direct steepest-descent" resummation for the 2-halo contribution that allows fast numerical computations, and we check that we obtain a good match to simulations at low and high kk. Our simple implementation already fares better than standard 1-loop perturbation theory on large scales and simple fits to the power spectrum at high kk, with a typical accuracy of 1% on large scales and 10% on small scales. We obtain similar results for the two-point correlation function. However, there remains room for improvement on the transition scale between the 2-halo and 1-halo contributions, which may be the most difficult regime to describe.Comment: 29 page

    Corporate Social Responsibility and Islamic Financial Institutions (IFIs): Management Perceptions from IFIs in Bahrain

    Get PDF
    Islamic finance is gaining greater attention in the finance industry, and this paper analyses how Islamic financial institutions (IFIs) are responding to the welfare needs of society. Using interview data with managers and content analysis of the disclosures, this study attempts to understand management perceptions of corporate social responsibility (CSR) in IFIs. A thorough understanding of CSR by managers, as evident in the interviews, has not been translated fully into practice. The partial use of IFIs’ potential role in social welfare would add further challenges in the era of financialisation

    Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences

    Get PDF
    A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf
    corecore