350 research outputs found
Utilisation agricole de plantes aquatiques, notamment en tant qu'amendement des sols, dans la province de Thua Thien Hue, Centre Vietnam. 1. Inventaire, abondance et caractérisation chimique des plantes aquatiques disponibles localement
Agricultura Use of Aquatic Plants, mainly as Soil Amendment, in the Thua Thien Hue Province, Central Vietnam. 1. Inventory, Abundance and Chemical Characterization of Collected Plants. The use of aquatic plants for various purposes, and notably as organic amendment for sandy soils with low inherent fertility is a frequent empirical practice in Central Vietnam. In the Thua Thien Hue Province, the Tam Giang lagoon covering 22,000 ha represents a source of exogenous biomass potentially important for agriculture. The present study makes an inventory of the submerged macrophytes and the algae occurring in the lagoon during the period of February-April 2005. Twelve species of macrophytes (belonging to the Potamogetonaceae, Najadaceae, Cymodoceaceae, Hydrocharitaceae, Ceratophyllaceae, and Haloragaceae families) and five of algae (belonging to the Ulvaceae, Cladophoraceae, Characeae, and Gracilariaceae families) were identified. Their abundance varies significantly following species and location in the lagoon. Indeed, the salt concentration, the water depth and the type of sediments in which the macrophytes are anchored are submitted to large variations depending on position in the lagoon. The highest values of fresh biomass measured for monospecific vegetal mats were observed for Vallisneria spiralis (3.1 kg.m-2), Najas indica (2.9 kg.m-2), Halodule tridentata (2.5 kg.m-2) and Cymodoceae rotundata (2.3 kg.m-2). The concentrations of main elements were determined in samples of all plant species. In the macrophytes, the following ranges of element concentrations (in % of dry matter) were found: N 1.0 to 3.5; P 0.08 to 0.45; K 1.0 to 4.2; Mg 0.3 to 1.4; Ca 0.7 to 2.8; Na 0.7 to 7.6. These variations indicate that the fertilization capacity of aquatic plants when they are used as soil amendment can vary to a large extent according to the species. Even more contrasted element concentrations were found for the algae. The Na concentrations in the collected plants can be partly explained by the salinity level met in the sampling areas
The clinical features of osteogenesis imperfecta in Vietnam
Purpose
Osteogenesis imperfecta (OI) has not been studied in a Vietnamese population before. The aim of this study was to systematically collect epidemiological information, investigate clinical features and create a clinical database of OI patients in Vietnam for future research and treatment strategy development.
Method
Participants underwent clinical and physical examinations; also medical records were reviewed. Genealogical information was collected and family members’ phenotypical manifestations recorded. Cases were classified according to the Sillence classification.
Results
In total, 146 OI patients from 120 families were studied: 46 with OI Type I, 46 with Type III and 54 with Type IV. Almost patients had skeletal deformations. One hundred and forty-two had a history of fractures, 117 blue sclera, 89 dentinogenesis imperfecta and 26 hearing loss. The total number of fractures was 1,932. Thirty-four patients had intra-uterine fractures and nine had perinatal fractures. Surgery was performed 163 times in 58 patients; 100 osteosyntheses and 63 osteotomies. Bisphosphonate treatment was used in 37 patients. The number of affected individuals and predominance of severe forms of OI indicate that the disease is under diagnosed in Vietnam, especially in cases without a family history or with mild form of OI. Deformities appeared in all patients with different severity and localisation, affecting mostly the lower limbs. OI medical and surgical treatment rates are low and in most cases surgery was performed due to fractures.
Conclusions
Compared to previous studies, our results indicate a lower OI prevalence and greater severity of symptoms in the Vietnamese population when compared with other areas. Further investigation, improved diagnosis and treatment are needed to increase the patients’ quality of life
Depsipeptide substrates for sortase-mediated N-terminal protein ligation
Technologies that allow the efficient chemical modification of proteins under mild conditions are widely sought after. Sortase-mediated peptide ligation provides a strategy for modifying the N or C terminus of proteins. This protocol describes the use of depsipeptide substrates (containing an ester linkage) with sortase A (SrtA) to completely modify proteins carrying a single N-terminal glycine residue under mild conditions in 4–6 h. The SrtA-mediated ligation reaction is reversible, so most labeling protocols that use this enzyme require a large excess of both substrate and sortase to produce high yields of ligation product. In contrast, switching to depsipeptide substrates effectively renders the reaction irreversible, allowing complete labeling of proteins with a small excess of substrate and catalytic quantities of sortase. Herein we describe the synthesis of depsipeptide substrates that contain an ester linkage between a threonine and glycolic acid residue and an N-terminal FITC fluorophore appended via a thiourea linkage. The synthesis of the depsipeptide substrate typically takes 2–3 d
Anchoring of proteins to lactic acid bacteria
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
Staphylococcus aureus forms spreading dendrites that have characteristics of active motility
Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and fo- cused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in struc- tures that we term ‘comets’, which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet ‘tail’; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not con- sistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions
The Respiratory Enzyme Complex Rnf Is Vital for Metabolic Adaptation and Virulence in Fusobacterium nucleatum
The Gram-negative oral pathobiont Fusobacterium nucleatum can traverse to extra-oral sites such as placenta and colon, promoting adverse pregnancy outcomes and colorectal cancer, respectively. How this anaerobe sustains many metabolically changing environments enabling its virulence potential remains unclear. Informed by our genome-wide transposon mutagenesis, we report here that the highly conserved Rhodobacter nitrogen-fixation (Rnf) complex, encoded by the rnfCDGEAB gene cluster, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of the Rnf complex via non-polar, in-frame deletion of rnfC (ΔrnfC) abrogates polymicrobial interaction (or coaggregation) associated with adhesin RadD and biofilm formation. The defect in coaggregation is not due to reduced cell surface of RadD, but rather an increased level of extracellular lysine, which binds RadD and inhibits coaggregation. Indeed, removal of extracellular lysine via washing ΔrnfC cells restores coaggregation, while addition of lysine inhibits this process. These phenotypes mirror that of a mutant (ΔkamA) that fails to metabolize extracellular lysine. Strikingly, the ΔrnfC mutant is defective in ATP production, cell growth, cell morphology, and expression of the enzyme MegL that produces hydrogen sulfide (H2S) from cysteine. Targeted metabolic profiling demonstrated that catabolism of many amino acids, including histidine and lysine, is altered in ΔrnfC cells, thereby reducing production of ATP and metabolites including H2S and butyrate. Most importantly, we show that the ΔrnfC mutant is severely attenuated in a mouse model of preterm birth. The indispensable function of Rnf complex in fusobacterial pathogenesis via modulation of bacterial metabolism makes it an attractive target for developing therapeutic intervention. IMPORTANCE
This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice
Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1
The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis
Initial Characterization of the FlgE Hook High Molecular Weight Complex of
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility
Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif
Sortase (a transamidase) has been shown to be responsible for the covalent attachment of proteins to the bacterial cell wall. Anchoring is effected on secreted proteins containing a specific cell wall motif toward their C-terminus; that for sortase A (SrtA) in Gram-positive bacteria often incorporates the sequence LPXTG. Such surface proteins are often characterized as virulence determinants and play important roles during the establishment and persistence of infection. Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis, which impacts on animal health and welfare and the economics of milk production. Comparison of stringently produced cell wall fractions from S. uberis and an isogenic mutant strain lacking SrtA permitted identification of 9 proteins likely to be covalently anchored at the cell surface. Analysis of these sequences implied the presence of two anchoring motifs for S. uberis, the classical LPXTG motif and an additional LPXXXD motif
- …
