801 research outputs found
Relaxation Design of Separable Tube Connectors
Design procedure to predict relaxation or time to leakage for separable tube connector
Laboratory Simulations of the Titan Surface to Elucidate the Huygens Probe GCMS Observations
The Cassini/Huygens mission has vastly increased the information we have available to stndy Satnro's moon Titan. The complete mission has included an array of observational methods including remote sensing techniques, upper atmosphere in-situ saropling, and the descent of the Huygens probe directly through the atmosphere to the surface [1,2]. The instruments on the Huygens probe remain the ouly source of in-situ measurements at the surface of Titan, and work evaluating these measurements to create a pict.rre of the surface environment is ongoing. In particular, the Gas Chromatograph Mass Spectrometer (GCMS) experiment on Huygens found that although there were no heavy hydrocarbons detected in the lower atmosphere, a rich spectrum of mass peaks arose once the probe landed on the surface [3,4], However, to date it has not been possible to extract the identity and abundances of the many minor components of the spectra due to a lack of temperatnre- and instrumentappropriate data for the relevant species. We are performing laboratory stndies designed to elucidate the spectrum collected on Titan's surface, utilizing a cryogenic charober maintained at appropriate temperature and pressure conditions. The experiments will simulate the temperatnre rise experienced by the surface, which led to an enhanced signal of volatiles detected by the Huygens GCMS. The objective of this study is to exaroine the characteristics of various surface analogs as measured by the Huygens GCMS flight spare instrument, which is currently housed in our laboratory at NASA Goddard Space Flight Center (GSFC). This identification cannot be adequately accomplished through theoretical work alone since the thermodynamic properties of many species at these temperatnres (94 K, HASI measurement [5]) are not known
Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California
Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH 4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7×1010g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3×10 10g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory. © 2012. American Geophysical Union. All Rights Reserved
Stable Isotope Fractionation in Titan Aerosol Formation
Stable isotope ratio measurements are a powerful tool used to understand both ancient and modern planetary processes. Instruments on the Cassini- Huygens spacecraft along with ground-based observations have measured several isotope pairs, including C-13/C-12 and N-15/N-14, in Titan's atmosphere. This includes isotopic measurements of the major atmospheric species, CH4 and N2, along with HCN, HC3N, C2H2. C2H6 and C4H2. However, the isotopic fractionation of Titan's organic aerosol has not conclusively been measured and therefore the effect of aerosol formation as an isotopic fractionation pathway in Titan's atmosphere has not been considered. Laboratory studies have measured the carbon and/or nitrogen isotopic fractionation of Titan aerosol analogs. [18] found that the carbon fractionation of photochemical organic aerosol analogs are more enriched in C-13. This enrichment in the aerosol analogs is opposite of what is predicted for photochemical products by the kinetic isotope effect. Additionally, both [16] and [18] found that the nitrogen fractionation in the organic aerosol analogs are opposite of what is observed in Titan's atmospheric N2 and HCN, with the aerosol analogs being a light nitrogen sink. Here we monitor the gas phase during photochemical aerosol analog production as a function of reaction time. In a recirculation experiment, the isotopic fractionation of carbon within the gas-phase products is measured as the CH4 reservoir is depleted. This allows us to monitor the isotopic fractionation pathway during photochemical aerosol analog formation
Use of Chronic Medications Among Patients with Non-Valvular Atrial Fibrillation
BACKGROUND: Frequency of administration (once daily versus more than once daily) is believed to be an important consideration affecting drug choice. OBJECTIVE: The aim of this study was to describe the characteristics of patients with non-valvular atrial fibrillation (NVAF) and the extent to which they take chronic medications, other than anticoagulants, more frequently than once daily. METHODS: Using data from a large, national database of health insurance claims, patients with a diagnosis of NVAF between 1 July 2008 and 30 September 2011 were identified, along with their prescription medications, to determine the proportion of patients taking chronic medications more than once a day. Prescription medications, co-morbidities, and CHADS(2) and CHA(2)DS(2)-VASc scores were evaluated. CHADS(2) assesses the risk of stroke in NVAF patients with the following risk factors: Congestive heart failure, Hypertension, Age ≥75 years, Diabetes mellitus, and history of prior Stroke or transient ischemic attack. The CHA(2)DS(2)-VASc score adds the following risk factors to the CHADS(2) score: Age 65–74 years, Vascular Disease, and Sex Category (Female). RESULTS: Overall, 324,172 patients with NVAF with mean CHADS(2) and CHA(2)DS(2)-VASc scores of 1.51 and 3.08, respectively, were included in the study. Of these patients, 299,716 (92.5 %) took chronic medications, with an average of 6.9 medications per patient, and 215,527 (66.5 % of all patients or 71.9 % of those taking chronic medications) took medications more than once per day. CONCLUSION: Use of chronic medications other than anticoagulants is common among patients with NVAF, and medications are typically taken multiple times per day. The average number of medications per patient and multiple therapeutic classes prescribed underscore the clinical complexity of NVAF patients. Hence, the choice of a once daily anticoagulant versus a more than once daily anticoagulant may be less relevant in a real world NVAF population in terms of a potential convenience benefit
The pale orange dot : the spectrum and habitability of hazy Archean Earth
Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.Publisher PDFPeer reviewe
‘O sibling, where art thou?’ – a review of avian sibling recognition with respect to the mammalian literature
Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ‘mixing potential’ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ‘direct familiarisation’ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ‘indirect familiarisation’ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic
Economic language and economy change: with implications for cyber-physical systems
The implementation of cyber-physical and similar systems depends on prevailing social and economic conditions. It is here argued that, if the effect of these technologies is to be benign, the current neo-liberal economy must change to a radically more cooperative model. In this paper, economy change means a thorough change to a qualitatively different kind of economy. It is contrasted with economic change, which is the kind of minor change usually considered in mainstream discourse. The importance of language is emphasised, including that of techno-optimism and that of economic conservatism. Problems of injustice, strife, and ecological overload cannot be solved by conventional growth together with technical efficiency gains. Rather, a change is advocated from economics-as-usual to a broader concept, oikonomia (root-household management), which takes into account all that contributes to a good life, including what cannot be represented quantitatively. Some elements of such a broader economy (work; basic income; asset and income limits) are discussed. It is argued that the benefits of technology can be enhanced and the ills reduced in such an economy. This is discussed in the case of cyber-physical systems under the headings employment, security, standards and oligopoly, and energy efficiency. The paper concludes that such systems, and similar technological developments, cannot resolve the problems of sustainability within an economy-as-usual model. If, however, there is the will to create a cooperative and sustainable economy, technology can contribute significantly to the resolution of present problems
Oxychlorine Detection in Gale Crater, Mars and Implications for Past Environmental Conditions
The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity has analyzed 3 scooped samples and 15 drilled samples since landing in 2012. Oxychlorine compounds (perchlorate/chlorate) were detected in the first 9 drilled samples but have not been detected in the last 6, starting with the Oudam sample in the Hartmanns Valley member of the Murray formation (Table 1). Scooped samples have all contained detectable oxychlorine. These results suggest that oxychlorine formation and preservation spans the geologic record on Mars but has not been uniform spatially or temporally
- …
