988 research outputs found
Stability and Dynamics of Crystals and Glasses of Motorized Particles
Many of the large structures of the cell, such as the cytoskeleton, are
assembled and maintained far from equilibrium. We study the stabilities of
various structures for a simple model of such a far-from-equilibrium organized
assembly in which spherical particles move under the influence of attached
motors. From the variational solutions of the manybody master equation for
Brownian motion with motorized kicking we obtain a closed equation for the
order parameter of localization. Thus we obtain the transition criterion for
localization and stability limits for the crystalline phase and frozen
amorphous structures of motorized particles. The theory also allows an estimate
of nonequilibrium effective temperatures characterizing the response and
fluctuations of motorized crystals and glasses.Comment: 5 pages, 3 figure
Method of filling databases of electronic components based on the uniform tables of document parameters
Рассматриваются вопросы разработки методики автоматизированного наполнения баз данных электрорадиоизделий, основанной на объединении таблиц параметров нормативного документа. Показаны её основные этапы и особенности. Предложено оформлять связи между параметрами и правило формирования наименования элементов в текстовом файле-шаблоне. Приводится предварительная оценка времени оформления файлов-шаблонов различных нормативных документов. Показано применениеметодики для автоматического наполнения технологических справочников.The problems of the development of the methodology for the automated filling of databases of electronic products based on the integration of the parameters tables of the normative document are considered. Its main stages and features are shown. It is proposed to formalize the relationship between the parameters and the rule for the formation of the names of elements in a text file-template. A preliminary estimate of the time for creating template files for various normative documents is given. The application of the technique for automatic filling oftechnological databases is shown
Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen
We discuss the propagation of hydrogen atoms in static electric and magnetic
fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on
the choice of the external fields the atoms may acquire both dynamical and
geometrical quantum mechanical phases. As an example of the former, we show
first in-beam spin rotation measurements on atomic hydrogen, which are in
excellent agreement with theory. Additional calculations of the behaviour of
the metastable 2S states of hydrogen reveal that the geometrical phases may
exhibit the signature of parity-(P-)violation. This invites for possible future
lABSE experiments, focusing on P-violating geometrical phases in the lightest
of all atoms.Comment: 6 pages, 4 figure
A preliminary census of the macrofungi of Mt Wellington, Tasmania- the sequestrate species
This is the fourth and final contribution in a series of papers providing a preliminary documentation of the macrofungi of Mt Wellington, Tasmania. The earlier papers dealt with the gilled Basidiomycota, the non-gilled Basidiomycota and the Ascomycota, respectively, excluding the sequestrate species. The present paper completes the series by dealing with the sequestrate species, of which seven Ascomycota, 76 Basidiomycota, three Glomeromycota and one Zygomycota were found. Seven new genera and 25 new species to be formally described elsewhere, are recorded
Time Resolved Correlation measurements of temporally heterogeneous dynamics
Time Resolved Correlation (TRC) is a recently introduced light scattering
technique that allows to detect and quantify dynamic heterogeneities. The
technique is based on the analysis of the temporal evolution of the speckle
pattern generated by the light scattered by a sample, which is quantified by
, the degree of correlation between speckle images recorded at
time and . Heterogeneous dynamics results in significant
fluctuations of with time . We describe how to optimize TRC
measurements and how to detect and avoid possible artifacts. The statistical
properties of the fluctuations of are analyzed by studying their
variance, probability distribution function, and time autocorrelation function.
We show that these quantities are affected by a noise contribution due to the
finite number of detected speckles. We propose and demonstrate a method to
correct for the noise contribution, based on a extrapolation
scheme. Examples from both homogeneous and heterogeneous dynamics are provided.
Connections with recent numerical and analytical works on heterogeneous glassy
dynamics are briefly discussed.Comment: 19 pages, 15 figures. Submitted to PR
Critical packing in granular shear bands
In a realistic three-dimensional setup, we simulate the slow deformation of
idealized granular media composed of spheres undergoing an axisymmetric
triaxial shear test. We follow the self-organization of the spontaneous strain
localization process leading to a shear band and demonstrate the existence of a
critical packing density inside this failure zone. The asymptotic criticality
arising from the dynamic equilibrium of dilation and compaction is found to be
restricted to the shear band, while the density outside of it keeps the memory
of the initial packing. The critical density of the shear band depends on
friction (and grain geometry) and in the limit of infinite friction it defines
a specific packing state, namely the \emph{dynamic random loose packing}
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
To investigate the accretion and feedback processes in massive star
formation, we analyze the shapes of emission lines from hot molecular cores,
whose asymmetries trace infall and expansion motions. The high-mass star
forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in
various lines of HCN and its isotopologues, complemented by APEX data. The
observations are compared to spherically symmetric, centrally heated models
with density power-law gradient and different velocity fields (infall or
infall+expansion), using the radiative transfer code RATRAN. The HCN line
profiles are asymmetric, with the emission peak shifting from blue to red with
increasing J and decreasing line opacity (HCN to HCN). This is most
evident in the HCN 12--11 line at 1062 GHz. These line shapes are reproduced by
a model whose velocity field changes from infall in the outer part to expansion
in the inner part. The qualitative reproduction of the HCN lines suggests that
infall dominates in the colder, outer regions, but expansion dominates in the
warmer, inner regions. We are thus witnessing the onset of feedback in massive
star formation, starting to reverse the infall and finally disrupting the whole
molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI
were critically important.Comment: A&A, HIFI special issue, accepte
Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334
We identify a prominent absorption feature at 1115 GHz, detected in first
HIFI spectra towards high-mass star-forming regions, and interpret its
astrophysical origin. The characteristic hyperfine pattern of the H2O+
ground-state rotational transition, and the lack of other known low-energy
transitions in this frequency range, identifies the feature as H2O+ absorption
against the dust continuum background and allows us to derive the velocity
profile of the absorbing gas. By comparing this velocity profile with velocity
profiles of other tracers in the DR21 star-forming region, we constrain the
frequency of the transition and the conditions for its formation. In DR21, the
velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of
OH cm-wave absorption, both stemming from the hot and dense clump surfaces
facing the HII-region and dynamically affected by the blister outflow. Diffuse
foreground gas dominates the absorption towards Sgr B2. The integrated
intensity of the absorption line allows us to derive lower limits to the H2O+
column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15
cm^-2 in Sgr B2.Comment: Accepted for publication in A&
- …
