690 research outputs found

    Solution processed amorphous silicon surface passivation layers

    Get PDF
    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X ray and constant final state yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 1015 cm3 enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivatio

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    About females and males: continuity and discontinuity in flies

    Full text link
    Through the decades of relentless and dedicated studies in Drosophila melanogaster, the pathway that governs sexual development has been elucidated in great detail and has become a paradigm in understanding fundamental cell-fate decisions. However, recent phylogenetic studies show that the molecular strategy used in Drosophila deviates in some important aspects from those found in other dipteran flies and suggest that the Drosophila pathway is likely to be a derivative of a simpler and more common principle. In this essay, I will discuss the evolutionary plasticity of the sex-determining pathway based on studies in the common housefly, Musca domestica. Diversification appears to primarily arise from subtle differences in the regulation of the key switch gene transformer at the top of the pathway. On the basis of these findings I propose a new idea on how the Drosophila pathway may have evolved from a more archetypal system such as in M. domestica. In essence, the arrival of an X counting mechanism mediated by Sex-lethal to compensate for X linked gene dose differences set the stage for an intimate coupling of the two pathways. Its precedent recruitment to the dosage compensation pathway allowed for an intervention in the regulation of transformer where it gradually and eventually' completely substituted for a need of transformer autoregulation

    Do exons code for structural or functional units in proteins?

    Get PDF
    In considering the origin and evolution of proteins, the possibility that proteins evolved from exons coding for specific structure-function modules is attractive for its economy and simplicity but is not systematically supported by the available data. However, the number of correspondences between exons and units of protein structure-function that have so far been identified appears to be greater than expected by chance alone. The available data also show (i) that exons are fairly limited in size but are large enough to specify structure-function modules in proteins; (ii) that the position of introns for homologous domains in the same gene is reasonably stable, but there is also evidence for mechanisms that alter the position or existence of introns; and (iii) that it is possible that the observed relationship of exons to protein structure represents a degenerate state of an ancestral correspondence between exons and structure-function modules in proteins

    4-(3-Azaniumylpropyl)morpholin-4-ium chloride hydrogen oxalate: An unusual example of a dication with different counter-anions

    Full text link
    © 2014 International Union of Crystallography. The mixed organic-inorganic title salt, C7H18N2O2+·C2HO4-·Cl-, forms an assembly of ionic components which are stabilized through a series of hydrogen bonds and charge-assisted intermolecular interactions. The title assembly crystallizes in the monoclinic C2/c space group with Z = 8. The asymmetric unit consists of a 4-(3-azaniumylpropyl)morpholin-4-ium dication, a hydrogen oxalate counter-anion and an inorganic chloride counter-anion. The organic cations and anions are connected through a network of N - H⋯O, O - H⋯O and C - H⋯O hydrogen bonds, forming several intermolecular rings that can be described by the graph-set notations R33(13), R21(5), R12(5), R21(6), R23(6), R22(8) and R33(9). The 4-(3-azaniumylpropyl)morpholin-4-ium dications are interconnected through N - H⋯O hydrogen bonds, forming C(9) chains that run diagonally along the ab face. Furthermore, the hydrogen oxalate anions are interconnected via O - H⋯O hydrogen bonds, forming head-to-tail C(5) chains along the crystallographic b axis. The two types of chains are linked through additional N - H⋯O and O - H⋯O hydrogen bonds, and the hydrogen oxalate chains are sandwiched by the 4-(3-azaniumylpropyl)morpholin-4-ium chains, forming organic layers that are separated by the chloride anions. Finally, the layered three-dimensional structure is stabilized via intermolecular N - H⋯Cl and C - H⋯Cl interactions

    The Chemistry of the Reaction Determines the Invariant Amino Acids during the Evolution and Divergence of Orotidine 5′-Monophosphate Decarboxylase

    Get PDF
    Orotidine 5'-phosphate (OMP) decarboxylase has the largest rate enhancement for any known enzyme. For an average protein of 270 amino acids from more than 80 species, only 8 amino acids are invariant, and 7 of these correspond to ligand-binding residues in the crystal structures of the enzyme from four species. It appears that the chemistry required for catalysis determines the invariant residues for this enzyme structure. A motif of three invariant amino acids at the catalytic site (DXKXXD) is also found in the enzyme hexulose-phosphate synthase. Although the core of OMP decarboxylase is conserved, it has undergone a variety of changes in subunit size or fusion to other protein domains, such as orotate phosphoribosyltransferase, during evolution in different kingdoms. The phylogeny of OMP decarboxylase shows a unique subgroup distinct from the three kingdoms of life. The enzyme subunit size almost doubles from Archaea (average mass of 24.5 kDa) to certain fungi (average mass of 41.7 kDa). These observed changes in subunit size are produced by insertions at 12 sites, largely in loops and on the exterior of the core protein. The consensus for all sequences has a minimal size of <20 kDa

    Purine nucleoside phosphorylase. Allosteric regulation of a dissociating enzyme.

    Get PDF
    Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is a trimeric enzyme that readily dissociates to the monomer. Dilution of enzyme from 20 to 0.02 microgram of protein/ml is accompanied by a greater than 50-fold increase in the specific activity (vtrimer = 0.23 nmol/min/microgram; vmonomer = 12.5 nmol/min/micrograms). Gel permeation chromatography in the presence of the substrate phosphate shows the enzyme to be predominantly trimeric at 50 mM Pi and predominantly monomeric at 100 mM Pi, when experiments are done at 24 degrees C. No significant dissociation was observed at 4 degrees C with Pi or at either temperature with the substrate inosine. As measured by dissociation, the L0.5 for Pi is 88 mM and thus significantly higher than the Km of 3.1 mM for Pi. Enzyme activity as a function of phosphate concentration showed negative cooperativity, but the conformational response measured by the change in native Mr during dissociation showed positive cooperatively toward Pi. These data support a model for two separate phosphate binding sites on the enzyme. The activity and stability of purine nucleoside phosphorylase are quite sensitive to the concentration of the enzyme as well as appropriate substrates. Although the monomer is interpreted as being a fully active form of the enzyme, the data in general are most consistent with the enzyme functioning in vivo as a regulated trimer

    CO2 Targets, Trajectories and Trends for International Shipping

    Get PDF
    The Shipping in Changing Climates (SCC) project connects the latest climate change science with knowledge, understanding and models of the shipping sector in a whole systems approach. It seeks to explore the potential to cut CO2 through the use of technical and operational changes in shipping and to understand how the sector might transition to a more resilient and low-carbon future; it also seeks to explore different climate change scenarios and related food and fuel security issues to gain an understanding of the direct and indirect impacts of climate change on the shipping sector. These scenarios can be used to build evidence and understanding around the range of potential future directions that the shipping industry may take. The RCUK Energy funded project brings together researchers from UCL (Energy Institute, Mechanical Engineering and Laws), Manchester, Southampton, Newcastle and Strathclyde, in close collaboration with a core industry stakeholder group of Shell, Lloyd’s Register, Rolls Royce, BMT and Maritime Strategies International, but drawing on the expertise and connections of over 35 companies and organisations worldwide. This paper is non-peer- reviewed and represents the collective opinions of the authors and should not be assumed to represent the views of all the researchers across the project or the project’s industry partners and their organisations

    Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation.

    Get PDF
    Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution
    corecore