66 research outputs found

    Transport in Bilayer Graphene: Calculations within a self-consistent Born approximation

    Full text link
    The transport properties of a bilayer graphene are studied theoretically within a self-consistent Born approximation. The electronic spectrum is composed of kk-linear dispersion in the low-energy region and kk-square dispersion as in an ordinary two-dimensional metal at high energy, leading to a crossover between different behaviors in the conductivity on changing the Fermi energy or disorder strengths. We find that the conductivity approaches 2e2/π22e^2/\pi^2\hbar per spin in the strong-disorder regime, independently of the short- or long-range disorder.Comment: 8 pages, 5 figure

    Hall plateau diagram for the Hofstadter butterfly energy spectrum

    Full text link
    We extensively study the localization and the quantum Hall effect in the Hofstadter butterfly, which emerges in a two-dimensional electron system with a weak two-dimensional periodic potential. We numerically calculate the Hall conductivity and the localization length for finite systems with the disorder in general magnetic fields, and estimate the energies of the extended levels in an infinite system. We obtain the Hall plateau diagram on the whole region of the Hofstadter butterfly, and propose a theory for the evolution of the plateau structure with increasing disorder. There we show that a subband with the Hall conductivity ne2/hn e^2/h has n|n| separated bunches of extended levels, at least for an integer n2n \leq 2. We also find that the clusters of the subbands with identical Hall conductivity, which repeatedly appear in the Hofstadter butterfly, have a similar localization property.Comment: 9 pages, 12 figure

    Magneto-optical properties of multilayer graphenes

    Full text link
    The magneto-optical absorption properties of graphene multilayers are theoretically studied. It is shown that the spectrum can be decomposed into sub-components effectively identical to the monolayer or bilayer graphene, allowing us to understand the spectrum systematically as a function of the layer number. Odd-layered graphenes always exhibit absorption peaks which shifts in proportion to sqrt(B), with B being the magnetic field, due to the existence of an effective monolayer-like subband. We propose a possibility of observing the monolayer-like spectrum even in a mixture of multilayer graphene films with various layers numbers.Comment: 9 pages, 7 figure

    Interactions, Localization, and the Integer Quantum Hall Effect

    Full text link
    We report on numerical studies of the influence of Coulomb interactions on localization of electronic wavefunctions in a strong magnetic field. Interactions are treated in the Hartree-Fock approximation. Localization properties are studied both by evaluating participation ratios of Hartree-Fock eigenfunctions and by studying the boundary-condition dependence of Hartree-Fock eigenvalues. We find that localization properties are independent of interactions. Typical energy level spacings near the Fermi level and the sensitivity of those energy levels to boundary condition show similar large enhancements so that the Thouless numbers of the Hartree-Fock eigenvalues are similar to those of non-interacting electrons.Comment: 10 pages, latex (revtex 3.0), 3 figures are avaiable from S.R. Eric Yang (e-mail [email protected]

    Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier

    Get PDF
    Stem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS) is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB) in specific brain regions. We used MRI guidance to target the ultrasound beam thereby delivering the iron-labeled, green fluorescent protein (GFP)-expressing neural stem cells specifically to the striatum and the hippocampus of the rat brain. Detection of cellular iron using MRI established that the cells crossed the BBB to enter the brain. After sacrifice, 24 hours later, immunohistochemical analysis confirmed the presence of GFP-positive cells in the targeted brain regions. We determined that the neural stem cells expressed common stem cell markers (nestin and polysialic acid) suggesting they survived after transplantation with MRIgFUS. Furthermore, delivered stem cells expressed doublecortin in vivo indicating the stem cells were capable of differentiating into neurons. Together, we demonstrate that transient opening of the BBB with MRIgFUS is sufficient for transplantation of stem cells from the blood to targeted brain structures. These results suggest that MRIgFUS may be an effective alternative to invasive intracranial surgery for stem cell transplantation

    A Preclinical Assessment of Neural Stem Cells as Delivery Vehicles for Anti-Amyloid Therapeutics

    Get PDF
    Transplantation of neural stems cells (NSCs) could be a useful means to deliver biologic therapeutics for late-stage Alzheimer's disease (AD). In this study, we conducted a small preclinical investigation of whether NSCs could be modified to express metalloproteinase 9 (MMP9), a secreted protease reported to degrade aggregated Aβ peptides that are the major constituents of the senile plaques. Our findings illuminated three issues with using NSCs as delivery vehicles for this particular application. First, transplanted NSCs generally failed to migrate to amyloid plaques, instead tending to colonize white matter tracts. Second, the final destination of these cells was highly influenced by how they were delivered. We found that our injection methods led to cells largely distributing to white matter tracts, which are anisotropic conduits for fluids that facilitate rapid distribution within the CNS. Third, with regard to MMP9 as a therapeutic to remove senile plaques, we observed high concentrations of endogenous metalloproteinases around amyloid plaques in the mouse models used for these preclinical tests with no evidence that the NSC-delivered enzymes elevated these activities or had any impact. Interestingly, MMP9-expressing NSCs formed substantially larger grafts. Overall, we observed long-term survival of NSCs in the brains of mice with high amyloid burden. Therefore, we conclude that such cells may have potential in therapeutic applications in AD but improved targeting of these cells to disease-specific lesions may be required to enhance efficacy

    New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling

    Get PDF
    BACKGROUND: Pharmacologic control of Cre-mediated recombination using tamoxifen-dependent activation of a Cre-estrogen receptor ligand binding domain fusion protein [CreER(T)] is widely used to modify and/or visualize cells in the mouse. METHODS AND FINDINGS: We describe here two new mouse lines, constructed by gene targeting to the Rosa26 locus to facilitate Cre-mediated cell modification. These lines should prove particularly useful in the context of sparse labeling experiments. The R26rtTACreER line provides ubiquitous expression of CreER under transcriptional control by the tetracycline reverse transactivator (rtTA); dual control by doxycycline and tamoxifen provides an extended dynamic range of Cre-mediated recombination activity. The R26IAP line provides high efficiency Cre-mediated activation of human placental alkaline phosphatase (hPLAP), complementing the widely used, but low efficiency, Z/AP line. By crossing with mouse lines that direct cell-type specific CreER expression, the R26IAP line has been used to produce atlases of labeled cholinergic and catecholaminergic neurons in the mouse brain. The R26IAP line has also been used to visualize the full morphologies of retinal dopaminergic amacrine cells, among the largest neurons in the mammalian retina. CONCLUSIONS: The two new mouse lines described here expand the repertoire of genetically engineered mice available for controlled in vivo recombination and cell labeling using the Cre-lox system

    CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination

    Get PDF
    BACKGROUND: The functional role of ELR-positive CXC chemokines during viral-induced demyelination was assessed. Inoculation of the neuroattenuated JHM strain of mouse hepatitis virus (JHMV) into the CNS of susceptible mice results in an acute encephalomyelitis that evolves into a chronic demyelinating disease, modeling white matter pathology observed in the human demyelinating disease Multiple Sclerosis. METHODOLOGY/PRINCIPAL FINDINGS: JHMV infection induced the rapid and sustained expression of transcripts specific for the ELR+ chemokine ligands CXCL1 and CXCL2, as well as their binding receptor CXCR2, which was enriched within the spinal cord during chronic infection. Inhibiting CXCR2 signaling with neutralizing antiserum significantly (p<0.03) delayed clinical recovery. Moreover, CXCR2 neutralization was associated with an increase in the severity of demyelination that was independent of viral recrudescence or modulation of neuroinflammation. Rather, blocking CXCR2 was associated with increased numbers of apoptotic cells primarily within white matter tracts, suggesting that oligodendrocytes were affected. JHMV infection of enriched oligodendrocyte progenitor cell (OPC) cultures revealed that apoptosis was associated with elevated expression of cleaved caspase 3 and muted Bcl-2 expression. Inclusion of CXCL1 within JHMV infected cultures restricted caspase 3 cleavage and increased Bcl-2 expression that was associated with a significant (p<0.001) decrease in apoptosis. CXCR2 deficient oligodendrocytes were refractory to CXCL1 mediated protection from JHMV-induced apoptosis, readily activating caspase 3 and down regulating Bcl-2. CONCLUSION/SIGNIFICANCE: These findings highlight a previously unappreciated role for CXCR2 signaling in protecting oligodendrocyte lineage cells from apoptosis during inflammatory demyelination initiated by viral infection of the CNS

    Cyr61/CCN1 Displays High-Affinity Binding to the Somatomedin B 1–44 Domain of Vitronectin

    Get PDF
    OV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, β-endorphin, and other molecules. domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis

    Real-Time Imaging and Quantification of Amyloid-β Peptide Aggregates by Novel Quantum-Dot Nanoprobes

    Get PDF
    Background: Protein aggregation plays a major role in the pathogenesis of neurodegenerative disorders, such as Alzheimer’s disease. However, direct real-time imaging of protein aggregation, including oligomerization and fibrillization, has never been achieved. Here we demonstrate the preparation of fluorescent semiconductor nanocrystal (quantum dot; QD)-labeled amyloid-b peptide (QDAb) and its advanced applications. Methodology/Principal Findings: The QDAb construct retained Ab oligomer-forming ability, and the sizes of these oligomers could be estimated from the relative fluorescence intensities of the imaged spots. Both QDAb coaggregation with intact Ab42 and insertion into fibrils were detected by fluorescence microscopy. The coaggregation process was observed by real-time 3D imaging using slit-scanning confocal microscopy, which showed a typical sigmoid curve with 1.5 h in the lag-time and 12 h until saturation. Inhibition of coaggregation using an anti-Ab antibody can be observed as 3D images on a microscopic scale. Microglia ingested monomeric QDAb more significantly than oligomeric QDAb, and the ingested QDAb was mainly accumulated in the lysosome. Conclusions/Significance: These data demonstrate that QDAb is a novel nanoprobe for studying Ab oligomerization an
    corecore