512 research outputs found

    Body Adornment Practises in Nigerian Culture a Multi-Ethnic Investigation

    Get PDF
    No Abstract

    Pressure Induced Topological Phase Transitions in Membranes

    Full text link
    Some highly unusual features of a lipid-water liquid crystal are revealed by high pressure x-ray diffraction, light scattering and dilatometric studies of the lamellar (bilayer LαL_{\alpha}) to nonlamellar inverse hexagonal (HIIH_{II}) phase transition. (i) The size of the unit cell of the HIIH_{II} phase increases with increasing pressure. (ii) The transition volume, ΔVbh\Delta V_{bh}, decreases and appears to vanish as the pressure is increased. (iii) The intensity of scattered light increases as ΔVbh\Delta V_{bh} decreases. Data are presented which suggest that this increase is due to the formation of an intermediate cubic phase, as predicted by recent theoretical suggestions of the underlying universal phase sequence.Comment: 12 pages, typed using REVTEX 2.

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore