16 research outputs found
Recommended from our members
Early maternal mirroring predicts infant motor system activation during facial expression observation.
Processing facial expressions is an essential component of social interaction, especially for preverbal infants. In human adults and monkeys, this process involves the motor system, with a neural matching mechanism believed to couple self- and other-generated facial gestures. Here, we used electroencephalography to demonstrate recruitment of the human motor system during observation and execution of facial expressions in nine-month-old infants, implicating this system in facial expression processing from a very young age. Notably, examination of early video-recorded mother-infant interactions supported the common, but as yet untested, hypothesis that maternal mirroring of infant facial gestures is central to the development of a neural matching mechanism for these gestures. Specifically, the extent to which mothers mirrored infant facial expressions at two months postpartum predicted infant motor system activity during observation of the same expressions at nine months. This suggests that maternal mirroring strengthens mappings between visual and motor representations of facial gestures, which increases infant neural sensitivity to particularly relevant cues in the early social environment
The functional architecture of mother-infant communication, and the development of infant social expressiveness in the first two months
By two-three months, infants show active social expressions during face-to-face interactions. These interactions are important, as they provide the foundation for later emotional regulation and cognition, but little is known about how infant social expressiveness develops. We considered two different accounts. One emphasizes the contingency of parental responsiveness, regardless of its form; the other, the functional architecture account, emphasizes the preparedness of both infants and parents to respond in specific ways to particular forms of behaviour in their partner. We videotaped mother-infant interactions from one to nine weeks, and analysed them with a micro-analytic coding scheme. Infant social expressiveness increased through the nine-week period, particularly after 3 weeks. This development was unrelated to the extent of maternal contingent responsiveness, even to infant social expressions. By contrast, specific forms of response that mothers used preferentially for infant social expressions - mirroring, marking with a smile- predicted the increase in these infant behaviours over time. These results support a functional architecture account of the perceptual and behavioural predispositions of infants and parents that allows young infants to capitalize on relatively limited exposure to specific parental behaviours, in order to develop important social capacities
Timing of Intervention Affects Brain Electrical Activity in Children Exposed to Severe Psychosocial Neglect
Background: Early psychosocial deprivation has profound effects on brain activity in the young child. Previous reports have shown increased power in slow frequencies of the electroencephalogram (EEG), primarily in the theta band, and decreased power in higher alpha and beta band frequencies in infants and children who have experienced institutional care. Methodology/Principal Findings: We assessed the consequences of removing infants from institutions and placing them into a foster care intervention on brain electrical activity when children were 8 years of age. We found the intervention was successful for increasing high frequency EEG alpha power, with effects being most pronounced for children placed into foster care before 24 months of age. Conclusions/Significance: The dependence on age of placement for the effects observed on high frequency EEG alpha power suggests a sensitive period after which brain activity in the face of severe psychosocial deprivation is less amenabl
The Important Roles of Natural Killer Cells in Liver Fibrosis
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis
