688 research outputs found
Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array
We present the development of a novel 11328 pixel silicon photomultiplier
(SiPM) camera for use with a ground-based Cherenkov telescope with
Schwarzschild-Couder optics as a possible medium-sized telescope for the
Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower
images with more than twice the optical resolution of cameras that are used in
current Cherenkov telescopes. Advantages of the higher resolution will be a
better event reconstruction yielding improved background suppression and
angular resolution of the reconstructed gamma-ray events, which is crucial in
morphology studies of, for example, Galactic particle accelerators and the
search for gamma-ray halos around extragalactic sources. Packing such a large
number of pixels into an area of only half a square meter and having a fast
readout directly attached to the back of the sensors is a challenging task. For
the prototype camera development, SiPMs from Hamamatsu with through silicon via
(TSV) technology are used. We give a status report of the camera design and
highlight a number of technological advancements that made this development
possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy
This is a report on the findings of the dark matter science working group for
the white paper on the status and future of TeV gamma-ray astronomy. The white
paper was commissioned by the American Physical Society, and the full white
paper can be found on astro-ph (arXiv:0810.0444). This detailed section
discusses the prospects for dark matter detection with future gamma-ray
experiments, and the complementarity of gamma-ray measurements with other
indirect, direct or accelerator-based searches. We conclude that any
comprehensive search for dark matter should include gamma-ray observations,
both to identify the dark matter particle (through the charac- teristics of the
gamma-ray spectrum) and to measure the distribution of dark matter in galactic
halos.Comment: Report from the Dark Matter Science Working group of the APS
commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9
figures
Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS
Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique
probe of our local Galactic neighborhood. CREs lose energy rapidly via
synchrotron radiation and inverse-Compton scattering processes while
propagating within the Galaxy and these losses limit their propagation
distance. For electrons with TeV energies, the limit is on the order of a
kiloparsec. Within that distance there are only a few known astrophysical
objects capable of accelerating electrons to such high energies. It is also
possible that the CREs are the products of the annihilation or decay of heavy
dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov
telescopes in southern Arizona, USA, is primarily utilized for gamma-ray
astronomy, but also simultaneously collects CREs during all observations. We
describe our methods of identifying CREs in VERITAS data and present an energy
spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300
hours of observations. A single power-law fit is ruled out in VERITAS data. We
find that the spectrum of CREs is consistent with a broken power law, with a
break energy at 710 40 140 GeV.Comment: 17 pages, 2 figures, accepted for publication in PR
Search for High Energy Gamma Rays from an X-ray Selected Blazar Sample
Our understanding of blazars has been greatly increased in recent years by
extensive multi-wavelength observations, particularly in the radio, X-ray and
gamma-ray regions. Over the past decade the Whipple 10m telescope has
contributed to this with the detection of 5 BL Lacertae objects at very high
gamma-ray energies. The combination of multi-wavelength data has shown that
blazars follow a well-defined sequence in terms of their broadband spectral
properties. Together with providing constraints on emission models, this
information has yielded a means by which potential sources of TeV emission may
be identified and predictions made as to their possible gamma-ray flux. We have
used the Whipple telescope to search for TeV gamma-ray emission from eight
objects selected from a list of such candidates. No evidence has been found for
VHE emission from the objects in our sample, and upper limits have been derived
for the mean gamma-ray flux above 390GeV. These flux upper limits are compared
with the model predictions and the implications of our results for future
observations are discussed.Comment: 15 pages, 2 figures, Accepted for publication in Ap
Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts
Transient X-ray binaries produce major outbursts in which the X-ray flux can
increase over the quiescent level by factors as large as . The low-mass
X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such
major outbursts in June and October 2015, respectively. We present here
observations at energies above hundreds of GeV with the VERITAS observatory
taken during some of the brightest X-ray activity ever observed from these
systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of
observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux
limits derived from these observations on the gamma-ray flux above 200 GeV of F
cm s correspond to a tiny fraction (about
) of the Eddington luminosity of the system, in stark contrast to that
seen in the X-ray band. No gamma rays have been detected during observations of
4U 0115+634 in the period of major X-ray activity in October 2015. The flux
upper limit derived from our observations is F cm
s for gamma rays above 300 GeV, setting an upper limit on the ratio of
gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa
Multiwavelength Observations of Markarian 421 in March 2001: an Unprecedented View on the X-ray/TeV Correlated Variability
(Abridged) We present a detailed analysis of week-long simultaneous
observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays
(Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables
us to establish firmly the existence of the correlation between the TeV and
X-ray luminosities, and to start unveiling some of its more detailed
characteristics, in particular its energy dependence, and time variability. The
source shows strong, highly correlated variations in X-ray and gamma-ray. No
evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3
ks). However, a detailed analysis of the March 19 flare reveals that data are
not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band
being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the
X-ray and gamma-ray variations are also highly correlated, and the TeV
luminosity increases more than linearly w.r.t. the X-ray one. The strong
correlation supports the standard model in which a unique electrons population
produces the X-rays by synchrotron radiation and the gamma-ray component by
inverse Compton scattering. However, for the individual best observed flares
the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux,
posing a serious challenge to emission models for TeV blazars. Rather special
conditions and/or fine tuning of the temporal evolution of the physical
parameters of the emission region are required in order to reproduce the
quadratic correlation.Comment: Correction to authorship. Minor editorial changes to text, figures,
references. 22 pages (emulateapj), 12 figures (47 postscript files) Published
in ApJ, 2008 April 20 (ADS: 2008ApJ...677..906F
TeV Particle Astrophysics II: Summary comments
A unifying theme of this conference was the use of different approaches to
understand astrophysical sources of energetic particles in the TeV range and
above. In this summary I review how gamma-ray astronomy, neutrino astronomy and
(to some extent) gravitational wave astronomy provide complementary avenues to
understanding the origin and role of high-energy particles in energetic
astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle
Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200
Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002
In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray
activity. This prompted a multiwavelength observation campaign with the Whipple
10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical
Observatory, and the University of Michigan Radio Astrophysical Observatory. We
present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and
compare the source characteristics with those measured during observations
taken during the years 2000 and 2002. The X-ray observations gave a data set
with high signal-to-noise light curves and energy spectra; however, the
gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore,
we find that the radio and optical fluxes do not show statistically significant
deviations from those measured during the 2002 flaring periods. While the X-ray
flux and X-ray photon index appear correlated during subsequent observations,
the apparent correlation evolved significantly between the years 2000, 2002,
and 2003. We discuss the implications of this finding for the mechanism that
causes the flaring activity.Comment: 17 pages, 6 figures, 2 table
Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS
We report the detection of very-high-energy (VHE) gamma-ray emission from
supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the
VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission
overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a
full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of
the VHE emission is centered near the peak of the coincident 12CO (J = 1-0)
emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern
end of the SNR. Evidently the current-epoch particles from the pulsar wind
nebula are not participating in the gamma-ray production. The VHE energy
spectrum measured with VERITAS is well characterized by a power law dN/dE =
N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/-
0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2}
s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the
steady Crab Nebula emission above the same energy. We describe the observations
and analysis of the object and briefly discuss the implications of the
detection in a multiwavelength context.Comment: 5 pages, 2 figure
- …
