1,961 research outputs found
Numerical study of spin quantum Hall transitions in superconductors with broken time-reversal symmetry
We present results of numerical studies of spin quantum Hall transitions in
disordered superconductors, in which the pairing order parameter breaks
time-reversal symmetry. We focus mainly on p-wave superconductors in which one
of the spin components is conserved. The transport properties of the system are
studied by numerically diagonalizing pairing Hamiltonians on a lattice, and by
calculating the Chern and Thouless numbers of the quasiparticle states. We find
that in the presence of disorder, (spin-)current carrying states exist only at
discrete critical energies in the thermodynamic limit, and the spin-quantum
Hall transition driven by an external Zeeman field has the same critical
behavior as the usual integer quantum Hall transition of non-interacting
electrons. These critical energies merge and disappear as disorder strength
increases, in a manner similar to those in lattice models for integer quantum
Hall transition.Comment: 9 pages, 9 figure
Spin Waves in Random Spin Chains
We study quantum spin-1/2 Heisenberg ferromagnetic chains with dilute, random
antiferromagnetic impurity bonds with modified spin-wave theory. By describing
thermal excitations in the language of spin waves, we successfully observe a
low-temperature Curie susceptibility due to formation of large spin clusters
first predicted by the real-space renormalization-group approach, as well as a
crossover to a pure ferromagnetic spin chain behavior at intermediate and high
temperatures. We compare our results of the modified spin-wave theory to
quantum Monte Carlo simulations.Comment: 3 pages, 3 eps figures, submitted to the 47th Conference on Magnetism
and Magnetic Material
Mesoscopic Effects in the Quantum Hall Regime
We report results of a study of (integer) quantum Hall transitions in a
single or multiple Landau levels for non-interacting electrons in disordered
two-dimensional systems, obtained by projecting a tight-binding Hamiltonian to
corresponding magnetic subbands. In finite-size systems, we find that
mesoscopic effects often dominate, leading to apparent non-universal scaling
behaviour in higher Landau levels. This is because localization length, which
grows exponentially with Landau level index, exceeds the system sizes amenable
to numerical study at present. When band mixing between multiple Landau levels
is present, mesoscopic effects cause a crossover from a sequence of quantum
Hall transitions for weak disorder to classical behaviour for strong disorder.
This behaviour may be of relevance to experimentally observed transitions
between quantum Hall states and the insulating phase at low magnetic fields.Comment: 13 pages, 6 figures, Proceedings of the International Meeting on
Mesoscopic and Disordered Systems, Bangalore December 2000, to appear in
Pramana, February 200
Spectra of Free Diquark in the Bethe-Salpeter Approach
In this work, we employ the Bethe-Salpeter (B-S) equation to investigate the
spectra of free diquarks and their B-S wave functions. We find that the B-S
approach can be consistently applied to study the diqaurks with two heavy
quarks or one heavy and one light quarks, but for two light-quark systems, the
results are not reliable. There are a few free parameters in the whole scenario
which can only be fixed phenomenologically. Thus, to determine them, one has to
study baryons which are composed of quarks and diquarks.Comment: 16 pages, no figure
Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems
Motivated by the recent suggestion of anisotropic effective exchange
interactions between Mn spins in GaMnAs (arising as a result of
spin-orbit coupling), we study their effects in diluted Heisenberg spin
systems. We perform Monte Carlo simulations on several phenomenological model
spin Hamiltonians, and investigate the extent to which frustration induced by
anisotropic exchanges can reduce the low temperature magnetization in these
models and the interplay of this effect with disorder in the exchange. In a
model with low coordination number and purely ferromagnetic (FM) exchanges, we
find that the low temperature magnetization is gradually reduced as exchange
anisotropy is turned on. However, as the connectivity of the model is
increased, the effect of small-to-moderate anisotropy is suppressed, and the
magnetization regains its maximum saturation value at low temperatures unless
the distribution of exchanges is very wide. To obtain significant suppression
of the low temperature magnetization in a model with high connectivity, as is
found for long-range interactions, we find it necessary to have both
ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY
interaction). This implies that disorder in the sign of the exchange
interaction is much more effective in suppressing magnetization at low
temperatures than exchange anisotropy.Comment: 9 pages, 8 figure
Modified spin-wave study of random antiferromagnetic-ferromagnetic spin chains
We study the thermodynamics of one-dimensional quantum spin-1/2 Heisenberg
ferromagnetic system with random antiferromagnetic impurity bonds. In the
dilute impurity limit, we generalize the modified spin-wave theory for random
spin chains, where local chemical potentials for spin-waves in ferromagnetic
spin segments are introduced to ensure zero magnetization at finite
temperature. This approach successfully describes the crossover from behavior
of pure one-dimensional ferromagnet at high temperatures to a distinct Curie
behavior due to randomness at low temperatures. We discuss the effects of
impurity bond strength and concentration on the crossover and low temperature
behavior.Comment: 14 pages, 7 eps figure
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots
We measure the high magnetic field () microwave conductivity,
Re, of a high mobility 2D electron system containing an antidot
array. Re vs frequency () increases strongly in the regime of
the fractional quantum Hall effect series, with Landau filling .
At microwave , Re vs exhibits a broad peak centered around
. On the peak, the 10 GHz Re can exceed its dc-limit
value by a factor of 5. This enhanced microwave conductivity is unobservable
for temperature K, and grows more pronounced as is
decreased. The effect may be due to excitations supported by the antidot edges,
but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment
Gold nanohexapods represent a novel class of optically tunable nanostructures consisting of an octahedral core and six arms grown on its vertices. By controlling the length of the arms, their localized surface plasmon resonance peaks could be tuned from the visible to the near-infrared region for deep penetration of light into soft tissues. Herein we compare the in vitro and in vivo capabilities of Au nanohexapods as photothermal transducers for theranostic applications by benchmarking against those of Au nanorods and nanocages. While all these Au nanostructures could absorb and convert near-infrared light into heat, Au nanohexapods exhibited the highest cellular uptake and the lowest cytotoxicity in vitro for both the as-prepared and PEGylated nanostructures. In vivo pharmacokinetic studies showed that the PEGylated Au nanohexapods had significant blood circulation and tumor accumulation in a mouse breast cancer model. Following photothermal treatment, substantial heat was produced in situ and the tumor metabolism was greatly reduced for all these Au nanostructures, as determined with ^(18)F-flourodeoxyglucose positron emission tomography/computed tomography (^(18)F-FDG PET/CT). Combined together, we can conclude that Au nanohexapods are promising candidates for cancer theranostics in terms of both photothermal destruction and contrast-enhanced diagnosis
- …
