3,509 research outputs found
Longitudinal Study of Lanana Creek
A longitudinal study was done to collect data on the various conditions of LananaCreek in Nacogdoches, Texas over a seven week span from September 14 to November 2, 2018. The part of the creek studies is a 3.5 mile stretch from East Austin Street to Hoya Soccer Complex, mostly located on the campus of Stephen F. Austin State University. There were 6 different testing sites selected along this expanse. Collection of samples was performed by the General Chemistry I Honors class as part of the laboratory experience. Once collected, the samples were transported back to the lab for testing. The tests performed on the samples included determination of the pH, total solids, total dissolved solids, water hardness, anion concentration, and alkalinity. Each of these tests analyzes for a different parameter that is essential in evaluating the health of the ecosystem as a whole and gives a good reflection of the overall health of the creek’s surrounding environment. The results were compared to EPA standards. During the testing period, there were significant rain events generating variable results after each sampling, but the overall study shows that LananaCreek is healthy
Entanglement Witnesses from Single-Particle Interference
We describe a general method of realizing entanglement witnesses in terms of
the interference pattern of a single quantum probe. After outlining the
principle, we discuss specific realizations both with electrons in mesoscopic
Aharonov-Bohm rings and with photons in standard Young's double-slit or
coherent-backscattering interferometers.Comment: 5 pages, 3 figures, epl2, uses pstricks.st
Kolmogorov Similarity Hypotheses for Scalar Fields: Sampling Intermittent Turbulent Mixing in the Ocean and Galaxy
Kolmogorov's three universal similarity hypotheses are extrapolated to
describe scalar fields like temperature mixed by turbulence. By the analogous
Kolmogorov third hypothesis for scalars, temperature dissipation rates chi
averaged over lengths r > L_K should be lognormally distributed with
intermittency factors I that increase with increasing turbulence energy length
scales L_O as I_chi-r = m_T ln(L_O/r). Tests of Kolmogorovian velocity and
scalar universal similarity hypotheses for very large ranges of turbulence
length and time scales are provided by data from the ocean and the Galactic
interstellar medium. The universal constant for turbulent mixing intermittency
m_T is estimated from oceanic data to be 0.44+-0.01, which is remarkably close
to estimates for Kolmogorov's turbulence intermittency constant m_u of
0.45+-0.05 from Galactic as well as atmospheric data. Extreme intermittency
complicates the oceanic sampling problem, and may lead to quantitative and
qualitative undersampling errors in estimates of mean oceanic dissipation rates
and fluxes. Intermittency of turbulence and mixing in the interstellar medium
may be a factor in the formation of stars.Comment: 23 pages original of Proc. Roy. Soc. article, 8 figures; in
"Turbulence and Stochastic Processes: Kolmogorov's ideas 50 years on", London
The Royal Society, 1991, J.C.R. Hunt, O.M. Phillips, D. Williams Eds., pages
1-240, vol. 434 (no. 1890) Proc. Roy. Soc. Lond. A, PDF fil
Syntax for free: representing syntax with binding using parametricity
We show that, in a parametric model of polymorphism, the type ∀ α. ((α → α) → α) → (α → α → α) → α is isomorphic to closed de Bruijn terms. That is, the type of closed higher-order abstract syntax terms is isomorphic to a concrete representation. To demonstrate the proof we have constructed a model of parametric polymorphism inside the Coq proof assistant. The proof of the theorem requires parametricity over Kripke relations. We also investigate some variants of this representation
Torsional response and stiffening of individual multi-walled carbon nanotubes
We report on the characterization of torsional oscillators which use
multi-walled carbon nanotubes as the spring elements. Through
atomic-force-microscope force-distance measurements we are able to apply
torsional strains to the nanotubes and measure their torsional spring constants
and effective shear moduli. We find that the effective shear moduli cover a
broad range, with the largest values near the theoretically predicted value.
The data also suggest that the nanotubes are stiffened by repeated flexing.Comment: 4 page
The Least-core and Nucleolus of Path Cooperative Games
Cooperative games provide an appropriate framework for fair and stable profit
distribution in multiagent systems. In this paper, we study the algorithmic
issues on path cooperative games that arise from the situations where some
commodity flows through a network. In these games, a coalition of edges or
vertices is successful if it enables a path from the source to the sink in the
network, and lose otherwise. Based on dual theory of linear programming and the
relationship with flow games, we provide the characterizations on the CS-core,
least-core and nucleolus of path cooperative games. Furthermore, we show that
the least-core and nucleolus are polynomially solvable for path cooperative
games defined on both directed and undirected network
Phase coherent transport in (Ga,Mn)As
Quantum interference effects and resulting quantum corrections of the
conductivity have been intensively studied in disordered conductors over the
last decades. The knowledge of phase coherence lengths and underlying dephasing
mechanisms are crucial to understand quantum corrections to the resistivity in
the different material systems. Due to the internal magnetic field and the
associated breaking of time-reversal symmetry quantum interference effects in
ferromagnetic materials have been scarcely explored. Below we describe the
investigation of phase coherent transport phenomena in the newly discovered
ferromagnetic semiconductor (Ga,Mn)As. We explore universal conductance
fluctuations in mesoscopic (Ga,Mn)As wires and rings, the Aharonov-Bohm effect
in nanoscale rings and weak localization in arrays of wires, made of the
ferromagnetic semiconductor material. The experiments allow to probe the phase
coherence length L_phi and the spin flip length L_SO as well as the temperature
dependence of dephasing.Comment: 22 pages, 10 figure
Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems.
Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses).
For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages
"Electro-flux" effect in superconducting hybrid Aharonov-Bohm rings
We have extended the circuit theory of Andreev conductance [Phys.~Rev.~Lett.
{\bf 73}, 1420 (1994)] to diffusive superconducting hybrid structures that
contain an Aharonov-Bohm ring. The electrostatic potential distribution in the
system is predicted to be flux-dependent with a period of the superconducting
flux quantum . When at least one tunnel barrier is present, the
conductance of the system oscillates with the same period.Comment: 4 pages RevTex including three Postscript figures. Also available at
http://www.tn.tudelft.nl/tn/thssci.htm
- …
