194 research outputs found
A universal platform for magnetostriction measurements in thin films
We present a universal nanomechanical sensing platform for the investigation
of magnetostriction in thin films. It is based on a doubly-clamped silicon
nitride nanobeam resonator covered with a thin magnetostrictive film. Changing
the magnetization direction within the film plane by an applied magnetic field
generates a magnetostrictive stress and thus changes the resonance frequency of
the nanobeam. A measurement of the resulting resonance frequency shift, e.g. by
optical interferometry, allows to quantitatively determine the magnetostriction
constants of the thin film. We use this method to determine the
magnetostriction constants of a 10nm thick polycrystalline cobalt film, showing
very good agreement with literature values. The presented technique can be
useful in particular for the precise measurement of magnetostriction in a
variety of (conducting and insulating) thin films, which can be deposited by
e.g. electron beam deposition, thermal evaporation or sputtering
Optical detection of a BCS transition of Lithium-6 in harmonic traps
We study the detection of a BCS transition within a sample of Lithium--6
atoms confined in a harmonic trap. Using the local density approximation we
calculate the pair correlation function in the normal and superfluid state at
zero temperature. We show that the softening of the Fermi hole associated with
a BCS transition leads to an observable increase in the intensity of
off--resonant light scattered from the atomic cloud at small angles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Anisotropic optical conductivity of the putative Kondo insulator CeRuSn
Kondo insulators and in particular their non-cubic representatives have
remained poorly understood. Here we report on the development of an anisotropic
energy pseudogap in the tetragonal compound CeRuSn employing optical
reflectivity measurements in broad frequency and temperature ranges, and local
density approximation plus dynamical mean field theory calculations. The
calculations provide evidence for a Kondo insulator-like response within the
plane and a more metallic response along the c axis and qualitatively
reproduce the experimental observations, helping to identify their origin
Single electron-phonon interaction in a suspended quantum dot phonon cavity
An electron-phonon cavity consisting of a quantum dot embedded in a
free-standing GaAs/AlGaAs membrane is characterized in Coulomb blockade
measurements at low temperatures. We find a complete suppression of single
electron tunneling around zero bias leading to the formation of an energy gap
in the transport spectrum. The observed effect is induced by the excitation of
a localized phonon mode confined in the cavity. This phonon blockade of
transport is lifted at magnetic fields where higher electronic states with
nonzero angular momentum are brought into resonance with the phonon energy.Comment: 4 pages, 4 figure
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
Optical Phonon Lasing in Semiconductor Double Quantum Dots
We propose optical phonon lasing for a double quantum dot (DQD) fabricated in
a semiconductor substrate. We show that the DQD is weakly coupled to only two
LO phonon modes that act as a natural cavity. The lasing occurs for pumping the
DQD via electronic tunneling at rates much higher than the phonon decay rate,
whereas an antibunching of phonon emission is observed in the opposite regime
of slow tunneling. Both effects disappear with an effective thermalization
induced by the Franck-Condon effect in a DQD fabricated in a carbon nanotube
with a strong electron-phonon coupling.Comment: 8 pages, 4 figure
Measuring nanomechanical motion with an imprecision far below the standard quantum limit
We demonstrate a transducer of nanomechanical motion based on cavity enhanced
optical near-fields capable of achieving a shot-noise limited imprecision more
than 10 dB below the standard quantum limit (SQL). Residual background due to
fundamental thermodynamical frequency fluctuations allows a total imprecision 3
dB below the SQL at room temperature (corresponding to 600 am/Hz^(1/2) in
absolute units) and is known to reduce to negligible values for moderate
cryogenic temperatures. The transducer operates deeply in the quantum
backaction dominated regime, prerequisite for exploring quantum backaction,
measurement-induced squeezing and accessing sub-SQL sensitivity using
backaction evading techniques
Quantum Non-Demolition Detection of Strongly Correlated Systems
Preparation, manipulation, and detection of strongly correlated states of
quantum many body systems are among the most important goals and challenges of
modern physics. Ultracold atoms offer an unprecedented playground for
realization of these goals. Here we show how strongly correlated states of
ultracold atoms can be detected in a quantum non-demolition scheme, that is, in
the fundamentally least destructive way permitted by quantum mechanics. In our
method, spatially resolved components of atomic spins couple to quantum
polarization degrees of freedom of light. In this way quantum correlations of
matter are faithfully mapped on those of light; the latter can then be
efficiently measured using homodyne detection. We illustrate the power of such
spatially resolved quantum noise limited polarization measurement by applying
it to detect various standard and "exotic" types of antiferromagnetic order in
lattice systems and by indicating the feasibility of detection of superfluid
order in Fermi liquids.Comment: Published versio
Diffraction of a superfluid Fermi gas by an atomic grating
An atomic grating generated by a pulsed standing wave laser field is proposed
to manipulate the superfluid state in a quantum degenerate gas of fermionic
atoms. We show that in the presence of atomic Cooper pairs, the density
oscillations of the gas caused by the atomic grating exhibit a much longer
coherence time than that in the normal Fermi gas. Our result indicates that the
technique of a pulsed atomic grating can be a potential candidate to detect the
atomic superfluid state in a quantum degenerate Fermi gas.Comment: 4 pages, 2 figure
- …
