257 research outputs found
Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance
The HIV-1 protease is a major target of inhibitor drugs in AIDS therapies. The therapies are impaired by mutations of the HIV-1 protease that can lead to resistance to protease inhibitors. These mutations are classified into major mutations, which usually occur first and clearly reduce the susceptibility to protease inhibitors, and minor, accessory mutations that occur later and individually do not substantially affect the susceptibility to inhibitors. Major mutations are predominantly located in the active site of the HIV-1 protease and can directly interfere with inhibitor binding. Minor mutations, in contrast, are typically located distal to the active site. A central question is how these distal mutations contribute to resistance development. In this article, we present a systematic computational investigation of stability changes caused by major and minor mutations of the HIV-1 protease. As most small single-domain proteins, the HIV-1 protease is only marginally stable. Mutations that destabilize the folded, active state of the protease therefore can shift the conformational equilibrium towards the unfolded, inactive state. We find that the most frequent major mutations destabilize the HIV-1 protease, whereas roughly half of the frequent minor mutations are stabilizing. An analysis of protease sequences from patients in treatment indicates that the stabilizing minor mutations are frequently correlated with destabilizing major mutations, and that highly resistant HIV-1 proteases exhibit significant fractions of stabilizing mutations. Our results thus indicate a central role of minor mutations in balancing the marginal stability of the protease against the destabilization induced by the most frequent major mutation
Interaction of Conical Membrane Inclusions: Effect of Lateral Tension
Considering two rigid conical inclusions embedded in a membrane subject to
lateral tension, we study the membrane-mediated interaction between these
inclusions that originates from the hat-shaped membrane deformations associated
with the cones. At non-vanishing lateral tensions, the interaction is found to
depend on the orientation of the cones with respect to the membrane plane. The
interaction of inclusions of equal orientation is repulsive at all distances
between them, while the inclusions of opposite orientation repel each other at
small separations, but attract each other at larger ones. Both the repulsive
and attractive forces become stronger with increasing lateral tension. This is
different from what has been predicted on the basis of the same static model
for the case of vanishing lateral tension. Without tension, the inclusions
repel each other at all distances independently of their relative orientation.
We conclude that lateral tension may induce the aggregation of conical membrane
inclusions.Comment: 10 pages (revtech), 5 figures (postscript
Lateral phase separation of confined membranes
We consider membranes interacting via short, intermediate and long stickers.
The effects of the intermediate stickers on the lateral phase separation of the
membranes are studied via mean-field approximation. The critical potential
depth of the stickers increases in the presence of the intermediate sticker.
The lateral phase separation of the membrane thus suppressed by the
intermediate stickers. Considering membranes interacting with short and long
stickers, the effect of confinement on the phase behavior of the membranes is
also investigated analytically
Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness
The adhesion of cells is mediated by membrane receptors that bind to
complementary ligands in apposing cell membranes. It is generally assumed that
the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane
adhesion zones is slower than the diffusion of unbound receptors and ligands.
We find that this slowing down is not only caused by the larger size of the
bound receptor-ligand complexes, but also by thermal fluctuations of the
membrane shape. We model two adhering membranes as elastic sheets pinned
together by receptor-ligand bonds and study the diffusion of the bonds using
Monte Carlo simulations. In our model, the fluctuations reduce the bond
diffusion constant in planar membranes by a factor close to 2 in the
biologically relevant regime of small bond concentrations.Comment: 6 pages, 5 figures; to appear in Europhysics Letter
Segregation of receptor-ligand complexes in cell adhesion zones: Phase diagrams and role of thermal membrane roughness
The adhesion zone of immune cells, the 'immunological synapse', exhibits
characteristic domains of receptor-ligand complexes. The domain formation is
likely caused by a length difference of the receptor-ligand complexes, and has
been investigated in experiments in which T cells adhere to supported membranes
with anchored ligands. For supported membranes with two types of anchored
ligands, MHCp and ICAM1, that bind to the receptors TCR and LFA1 in the cell
membrane, the coexistence of domains of TCR-MHCp and LFA1-ICAM1 complexes in
the cell adhesion zone has been observed for a wide range of ligand
concentrations and affinities. For supported membranes with long and short
ligands that bind to the same cell receptor CD2, in contrast, domain
coexistence has been observed for a rather narrow ratio of ligand
concentrations. In this article, we determine detailed phase diagrams for cells
adhering to supported membranes with a statistical-physical model of cell
adhesion. We find a characteristic difference between the adhesion scenarios in
which two types of ligands in a supported membrane bind (i) to the same cell
receptor or (ii) to two different cell receptors, which helps to explain the
experimental observations. Our phase diagrams fully include thermal shape
fluctuations of the cell membranes on nanometer scales, which lead to a
critical point for the domain formation and to a cooperative binding of the
receptors and ligands.Comment: 23 pages, 6 figure
Indirect interactions of membrane-adsorbed cylinders
Biological and biomimetic membranes often contain aggregates of embedded or
adsorbed macromolecules. In this article, the indirect interactions of
cylindrical objects adhering to a planar membrane are considered theoretically.
The adhesion of the cylinders causes a local perturbation of the equilibrium
membrane shape, which leads to membrane-mediated interactions. For a planar
membrane under lateral tension, the interaction is repulsive for a pair of
cylinders adhering to the same side of the membrane, and attractive for
cylinders adhering at opposite membrane sides. For a membrane in an external
harmonic potential, the interaction of adsorbed cylinders is always attractive
and increases if forces perpendicular to the membrane act on the cylinders.Comment: 9 pages, 8 figures; typos correcte
Random pinning limits the size of membrane adhesion domains
Theoretical models describing specific adhesion of membranes predict (for
certain parameters) a macroscopic phase separation of bonds into adhesion
domains. We show that this behavior is fundamentally altered if the membrane is
pinned randomly due to, e.g., proteins that anchor the membrane to the
cytoskeleton. Perturbations which locally restrict membrane height fluctuations
induce quenched disorder of the random-field type. This rigorously prevents the
formation of macroscopic adhesion domains following the Imry-Ma argument [Y.
Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of
random-field disorder follows from analytical calculations, and is strikingly
confirmed in large-scale Monte Carlo simulations. These simulations are based
on an efficient composite Monte Carlo move, whereby membrane height and bond
degrees of freedom are updated simultaneously in a single move. The application
of this move should prove rewarding for other systems also.Comment: revised and extended versio
Effective free energy for pinned membranes
We consider membranes adhered through specific receptor-ligand bonds. Thermal
undulations of the membrane induce effective interactions between adhesion
sites. We derive an upper bound to the free energy that is independent of
interaction details. To lowest order in a systematic expansion we obtain
two-body interactions which allow to map the free energy onto a lattice gas
with constant density. The induced interactions alone are not strong enough to
lead to a condensation of individual adhesion sites. A measure of the thermal
roughness is shown to depend on the inverse square root of the density of
adhesion sites, which is in good agreement with previous computer simulations.Comment: to appear as a Rapid Communication in Phys. Rev.
Adhesion of surfaces via particle adsorption: Exact results for a lattice of fluid columns
We present here exact results for a one-dimensional gas, or fluid, of
hard-sphere particles with attractive boundaries. The particles, which can
exchange with a bulk reservoir, mediate an interaction between the boundaries.
A two-dimensional lattice of such one-dimensional gas `columns' represents a
discrete approximation of a three-dimensional gas of particles between two
surfaces. The effective particle-mediated interaction potential of the
boundaries, or surfaces, is calculated from the grand-canonical partition
function of the one-dimensional gas of particles, which is an extension of the
well-studied Tonks gas. The effective interaction potential exhibits two
minima. The first minimum at boundary contact reflects depletion interactions,
while the second minimum at separations close to the particle diameter results
from a single adsorbed particle that crosslinks the two boundaries. The second
minimum is the global minimum for sufficiently large binding energies of the
particles. Interestingly, the effective adhesion energy corresponding to this
minimum is maximal at intermediate concentrations of the particles.Comment: to appear in Journal of Statistical Mechanics: Theory and Experimen
Phi-values in protein folding kinetics have energetic and structural components
Phi-values are experimental measures of how the kinetics of protein folding
is changed by single-site mutations. Phi-values measure energetic quantities,
but are often interpreted in terms of the structures of the transition state
ensemble. Here we describe a simple analytical model of the folding kinetics in
terms of the formation of protein substructures. The model shows that
Phi-values have both structural and energetic components. In addition, it
provides a natural and general interpretation of "nonclassical" Phi-values
(i.e., less than zero, or greater than one). The model reproduces the
Phi-values for 20 single-residue mutations in the alpha-helix of the protein
CI2, including several nonclassical Phi-values, in good agreement with
experiments.Comment: 15 pages, 3 figures, 1 tabl
- …
