1,967 research outputs found
Mesoscopic Rydberg Gate based on Electromagnetically Induced Transparency
We demonstrate theoretically a parallelized C-NOT gate which allows to
entangle a mesoscopic ensemble of atoms with a single control atom in a single
step, with high fidelity and on a microsecond timescale. Our scheme relies on
the strong and long-ranged interaction between Rydberg atoms triggering
Electromagnetically Induced Transparency (EIT). By this we can robustly
implement a conditional transfer of all ensemble atoms among two logical
states, depending on the state of the control atom. We outline a many body
interferometer which allows a comparison of two many-body quantum states by
performing a measurement of the control atom.Comment: published versio
Quantum critical behavior in strongly interacting Rydberg gases
We study the appearance of correlated many-body phenomena in an ensemble of
atoms driven resonantly into a strongly interacting Rydberg state. The ground
state of the Hamiltonian describing the driven system exhibits a second order
quantum phase transition. We derive the critical theory for the quantum phase
transition and show that it describes the properties of the driven Rydberg
system in the saturated regime. We find that the suppression of Rydberg
excitations known as blockade phenomena exhibits an algebraic scaling law with
a universal exponent.Comment: 4 pages, 3 figures, published versio
Cavity-induced temperature control of a two-level system
We consider a two-level atom interacting with a single mode of the
electromagnetic field in a cavity within the Jaynes-Cummings model. Initially,
the atom is thermal while the cavity is in a coherent state. The atom interacts
with the cavity field for a fixed time. After removing the atom from the cavity
and applying a laser pulse the atom will be in a thermal state again. Depending
on the interaction time with the cavity field the final temperature can be
varied over a large range. We discuss how this method can be used to cool the
internal degrees of freedom of atoms and create heat baths suitable for
studying thermodynamics at the nanoscale
Neural Attentive Session-based Recommendation
Given e-commerce scenarios that user profiles are invisible, session-based
recommendation is proposed to generate recommendation results from short
sessions. Previous work only considers the user's sequential behavior in the
current session, whereas the user's main purpose in the current session is not
emphasized. In this paper, we propose a novel neural networks framework, i.e.,
Neural Attentive Recommendation Machine (NARM), to tackle this problem.
Specifically, we explore a hybrid encoder with an attention mechanism to model
the user's sequential behavior and capture the user's main purpose in the
current session, which are combined as a unified session representation later.
We then compute the recommendation scores for each candidate item with a
bi-linear matching scheme based on this unified session representation. We
train NARM by jointly learning the item and session representations as well as
their matchings. We carried out extensive experiments on two benchmark
datasets. Our experimental results show that NARM outperforms state-of-the-art
baselines on both datasets. Furthermore, we also find that NARM achieves a
significant improvement on long sessions, which demonstrates its advantages in
modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939,
arXiv:1606.08117 by other author
Two-dimensional array of microtraps with atomic shift register on a chip
Arrays of trapped atoms are the ideal starting point for developing registers
comprising large numbers of physical qubits for storing and processing quantum
information. One very promising approach involves neutral atom traps produced
on microfabricated devices known as atom chips, as almost arbitrary trap
configurations can be realised in a robust and compact package. Until now,
however, atom chip experiments have focused on small systems incorporating
single or only a few individual traps. Here we report experiments on a
two-dimensional array of trapped ultracold atom clouds prepared using a simple
magnetic-film atom chip. We are able to load atoms into hundreds of tightly
confining and optically resolved array sites. We then cool the individual atom
clouds in parallel to the critical temperature required for quantum degeneracy.
Atoms are shuttled across the chip surface utilising the atom chip as an atomic
shift register and local manipulation of atoms is implemented using a focused
laser to rapidly empty individual traps.Comment: 6 pages, 4 figure
Coverage-dependent adsorption sites in the K/Ru(0001) system: a low-energy electron-diffraction analysis
The two ordered phases p(2 × 2) at a coverage θ = 0.25 and (√3 × √3)R30° at θ = 0.33 of potassium adsorbed on Ru(0001) were analyzed by use of low-energy electron-diffraction (LEED). In the (√3 × √3)R30° phase, the K atoms occupy threefold hcp sites, while in the p(2 × 2) phase the fcc site is favoured. In both phases, the K hard-sphere radii are nearly the same and close to the covalent Pauling radius
Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap
We explore how the extraordinary properties of Rydberg atoms can be employed
to impact the motion of ultracold ground state atoms. Specifically, we use an
off-resonant two-photon laser dressing to map features of the Rydberg states on
ground state atoms. It is demonstrated that the interplay between the spatially
varying quantization axis of the considered Ioffe-Pritchard field and the fixed
polarizations of the laser transitions provides the possibility of
substantially manipulating the ground state trapping potential.Comment: 11 pages, 4 figure
Mutual information between geomagnetic indices and the solar wind as seen by WIND : implications for propagation time estimates
The determination of delay times of solar wind conditions at the sunward libration point to effects on Earth is investigated using mutual information. This measures the amount of information shared between two timeseries. We consider the mutual information content of solar wind observations, from WIND, and the geomagnetic indices. The success of five commonly used schemes for estimating interplanetary propagation times is examined. Propagation assuming a fixed plane normal at 45 degrees to the GSE x-axis (i.e. the Parker Spiral estimate) is found to give optimal mutual information. The mutual information depends on the point in space chosen as the target for the propagation estimate, and we find that it is maximized by choosing a point in the nightside rather than dayside magnetosphere. In addition, we employ recurrence plot analysis to visualize contributions to the mutual information, this suggests that it appears on timescales of hours rather than minutes
- …
