1,967 research outputs found

    Mesoscopic Rydberg Gate based on Electromagnetically Induced Transparency

    Full text link
    We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering Electromagnetically Induced Transparency (EIT). By this we can robustly implement a conditional transfer of all ensemble atoms among two logical states, depending on the state of the control atom. We outline a many body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.Comment: published versio

    Quantum critical behavior in strongly interacting Rydberg gases

    Full text link
    We study the appearance of correlated many-body phenomena in an ensemble of atoms driven resonantly into a strongly interacting Rydberg state. The ground state of the Hamiltonian describing the driven system exhibits a second order quantum phase transition. We derive the critical theory for the quantum phase transition and show that it describes the properties of the driven Rydberg system in the saturated regime. We find that the suppression of Rydberg excitations known as blockade phenomena exhibits an algebraic scaling law with a universal exponent.Comment: 4 pages, 3 figures, published versio

    Cavity-induced temperature control of a two-level system

    Full text link
    We consider a two-level atom interacting with a single mode of the electromagnetic field in a cavity within the Jaynes-Cummings model. Initially, the atom is thermal while the cavity is in a coherent state. The atom interacts with the cavity field for a fixed time. After removing the atom from the cavity and applying a laser pulse the atom will be in a thermal state again. Depending on the interaction time with the cavity field the final temperature can be varied over a large range. We discuss how this method can be used to cool the internal degrees of freedom of atoms and create heat baths suitable for studying thermodynamics at the nanoscale

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Two-dimensional array of microtraps with atomic shift register on a chip

    Get PDF
    Arrays of trapped atoms are the ideal starting point for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost arbitrary trap configurations can be realised in a robust and compact package. Until now, however, atom chip experiments have focused on small systems incorporating single or only a few individual traps. Here we report experiments on a two-dimensional array of trapped ultracold atom clouds prepared using a simple magnetic-film atom chip. We are able to load atoms into hundreds of tightly confining and optically resolved array sites. We then cool the individual atom clouds in parallel to the critical temperature required for quantum degeneracy. Atoms are shuttled across the chip surface utilising the atom chip as an atomic shift register and local manipulation of atoms is implemented using a focused laser to rapidly empty individual traps.Comment: 6 pages, 4 figure

    Coverage-dependent adsorption sites in the K/Ru(0001) system: a low-energy electron-diffraction analysis

    Get PDF
    The two ordered phases p(2 × 2) at a coverage θ = 0.25 and (√3 × √3)R30° at θ = 0.33 of potassium adsorbed on Ru(0001) were analyzed by use of low-energy electron-diffraction (LEED). In the (√3 × √3)R30° phase, the K atoms occupy threefold hcp sites, while in the p(2 × 2) phase the fcc site is favoured. In both phases, the K hard-sphere radii are nearly the same and close to the covalent Pauling radius

    Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap

    Full text link
    We explore how the extraordinary properties of Rydberg atoms can be employed to impact the motion of ultracold ground state atoms. Specifically, we use an off-resonant two-photon laser dressing to map features of the Rydberg states on ground state atoms. It is demonstrated that the interplay between the spatially varying quantization axis of the considered Ioffe-Pritchard field and the fixed polarizations of the laser transitions provides the possibility of substantially manipulating the ground state trapping potential.Comment: 11 pages, 4 figure

    Mutual information between geomagnetic indices and the solar wind as seen by WIND : implications for propagation time estimates

    Get PDF
    The determination of delay times of solar wind conditions at the sunward libration point to effects on Earth is investigated using mutual information. This measures the amount of information shared between two timeseries. We consider the mutual information content of solar wind observations, from WIND, and the geomagnetic indices. The success of five commonly used schemes for estimating interplanetary propagation times is examined. Propagation assuming a fixed plane normal at 45 degrees to the GSE x-axis (i.e. the Parker Spiral estimate) is found to give optimal mutual information. The mutual information depends on the point in space chosen as the target for the propagation estimate, and we find that it is maximized by choosing a point in the nightside rather than dayside magnetosphere. In addition, we employ recurrence plot analysis to visualize contributions to the mutual information, this suggests that it appears on timescales of hours rather than minutes
    corecore