503 research outputs found
Quasiparticle dynamics and in-plane anisotropy in system near onset of superconductivity
We report on an infrared study of carrier dynamics within the CuO
planes in heavily underdoped detwinned single crystals of YBaCuO. In an effort to reveal the electronic structure near the onset of
superconductivity, we investigate the strong anisotropy of the electromagnetic
response due to an enhancement of the scattering rate along the a-axis. We
propose that the origin of this anisotropy is related to a modulation of the
electron density within the CuO planes.Comment: 5 pages, 4 figure
Intrinsic Tunneling in Cuprates and Manganites
The most anisotropic high temperature superconductors like Bi2Sr2CaCu2O8, as
well as the recently discovered layered manganite La1.4Sr1.6Mn2O7 are layered
metallic systems where the interlayer current transport occurs via sequential
tunneling of charge carriers. As a consequence, in Bi2Sr2CaCu2O8 adjacent CuO2
double layers form an intrinsic Josephson tunnel junction while in in
La1.4Sr1.6Mn2O7 tunneling of spin polarized charge carriers between adjacent
MnO2 layers leads to an intrinsic spin valve effect. We present and discuss
interlayer transport experiments for both systems. To perform the experiments
small sized mesa structures were patterned on top of single crystals of the
above materials defining stacks of a small number of intrinsic Josephson
junctions and intrinsic spin valves, respectively.Comment: 6 pages, 8 figure
Scaling of the Equilibrium Magnetization in the Mixed State of Type-II Superconductors
We discuss the analysis of mixed-state magnetization data of type-II
superconductors using a recently developed scaling procedure. It is based on
the fact that, if the Ginzburg-Landau parameter kappa does not depend on
temperature, the magnetic susceptibility is a universal function of H/H_c2(T),
leading to a simple relation between magnetizations at different temperatures.
Although this scaling procedure does not provide absolute values of the upper
critical fieldH_c2(T), its temperature variation can be established rather
accurately. This provides an opportunity to validate theoretical models that
are usually employed for the evaluation of H_c2(T) from equilibrium
magnetization data. In the second part of the paper we apply this scaling
procedure for a discussion of the notorious first order phase transition in the
mixed state of high temperature superconductors. Our analysis, based on
experimental magnetization data available in the literature, shows that the
shift of the magnetization accross the transition may adopt either sign,
depending on the particular chosen sample. We argue that this observation is
inconsistent with the interpretation that this transition always represents the
melting transition of the vortex lattice.Comment: 18 pages, 12 figure
Investigating The Vortex Melting Phenomenon In BSCCO Crystals Using Magneto-Optical Imaging Technique
Using a novel differential magneto-optical imaging technique we investigate
the phenomenon of vortex lattice melting in crystals of Bi_2Sr_2CaCu_2O_8
(BSCCO). The images of melting reveal complex patterns in the formation and
evolution of the vortex solid-liquid interface with varying field (H) or
temperature (T). We believe that the complex melting patterns are due to a
random distribution of material disorder or inhomogeneities across the sample,
which create fluctuations in the local melting temperature or field value. To
study the fluctuations in the local melting temperature / field, we have
constructed maps of the melting landscape T_m(H,r), viz., the melting
temperature (T_m) at a given location (r) in the sample at a given field (H). A
study of these melting landscapes reveals an unexpected feature: the melting
landscape is not fixed, but changes rather dramatically with varying field and
temperature along the melting line. It is concluded that the changes in both
the scale and shape of the landscape result from the competing contributions of
different types of quenched disorder which have opposite effects on the local
melting transition.Comment: Paper presented at the International Symposium on Advances in
Superconductivity & Magnetism: Materials, Mechanisms & Devices September
25-28, 2001, Mangalore, India. Symposium proceedings will be published in a
special issue of Pramana - Journal of Physic
Evidence for Anisotropic Vortex Dynamics and Pauli Limitation in the Upper Critical Field of FeSe1-xTex
We have determined HC2(T) for FeSe1-xTex (x=0.52) single crystals using
resistivity measurements at high static and pulsed magnetic field, as well as
specific heat measurements up to 9T. We find that the significant anisotropy of
the initial slope of HC2(T) determined from resistivity measurements, is not
present when HC2 is determined from the specific heat results. This suggests
that the thermodynamic upper critical field is almost isotropic, and that
anisotropic vortex dynamics play a role. Further evidence of anisotropic vortex
dynamics is found in the behaviour in pulsed field. We also find that Pauli
limiting must be included in order to fit the temperature dependence of HC2,
indicating probably higher effective mass in FeSe1-xTex than in other Fe
superconductors
Vortex Lock-In Deep in the Bose Glass
We use a Bi gaussmeter of micron dimensions to explore the magnetic field dependence of the magnetization relaxation rate and the critical current down to millikelvin temperatures in untwinned single crystals of YBa_2Cu_3O_(7-δ) with columnar defects. The response separates into three regimes as a function of the ratio of vortex density to columnar defect density B/B_φ: enhancements in both critical current and quantum creep in the dilute limit, vanishing magnetization relaxation at the matching density (the proposed "Mott insulator'' phase line), and the emergence of temperature-dependent vortex motion for B≫B_φ
Vanishing magnetization relaxation in the high field quantum limit in YBa_2Cu_3O_(7-δ)
We have investigated the magnetic response of untwinned single crystals of YBa_2Cu_3O_(7-δ) at millikelvin temperatures using a Bi thin film magnetometer of micron dimensions. Below T=0.8 K, the magnetization relaxation rate S crosses over from thermally activated to quantum behavior. Above a sharply defined and strongly temperature-dependent threshold field, S disappears altogether. In concert with the vanishing magnetization relaxation, discrete steps appear in the magnetic hysteresis B(H), each of which corresponds to the `'stick-slip'' motion of 10^3 vortices under the magnetometer
Direct observation of the washboard noise of a driven vortex lattice in a high-temperature superconductor, Bi2Sr2CaCu2Oy
We studied the conduction noise spectrum in the vortex state of a
high-temperature superconductor, Bi2Sr2CaCu2Oy, subject to a uniform driving
force. Two characteristic features, a broadband noise (BBN) and a narrow-band
noise (NBN), were observed in the vortex-solid phase. The origin of the large
BBN was determined to be plastic motion of the vortices, whereas the NBN was
found to originate from the washboard modulation of the translational velocity
of the driven vortices. We believe this to be the first observation ofComment: 4 pages, 4 figures, to appear in Phys. Rev. Let
- …
