1,457 research outputs found

    Spontaneous Dissociation of 85Rb Feshbach Molecules

    Get PDF
    The spontaneous dissociation of 85Rb dimers in the highest lying vibrational level has been observed in the vicinity of the Feshbach resonance which was used to produce them. The molecular lifetime shows a strong dependence on magnetic field, varying by three orders of magnitude between 155.5 G and 162.2 G. Our measurements are in good agreement with theoretical predictions in which molecular dissociation is driven by inelastic spin relaxation. Molecule lifetimes of tens of milliseconds can be achieved close to resonance.Comment: 4 pages, 3 figure

    Ultracold Molecule Production Via a Resonant Oscillating Magnetic Field

    Get PDF
    A novel atom-molecule conversion technique has been investigated. Ultracold 85Rb atoms sitting in a dc magnetic field near the 155 G Feshbach resonance are associated by applying a small sinusoidal oscillation to the magnetic field. There is resonant atom to molecule conversion when the modulation frequency closely matches the molecular binding energy. We observe that the atom to molecule conversion efficiency depends strongly on the frequency, amplitude, and duration of the applied modulation and on the phase space density of the sample. This technique offers high conversion efficiencies without the necessity of crossing or closely approaching the Feshbach resonance and allows precise spectroscopic measurements. Efficiencies of 55% have been observed for pure Bose-Einstein condensates

    Production Efficiency of Ultracold Feshbach Molecules in Bosonic and Fermionic Systems

    Get PDF
    We investigate the production efficiency of ultracold molecules in bosonic 85^{85}Rb and fermionic 40^{40}K when the magnetic field is swept across a Feshbach resonance. For adiabatic sweeps of the magnetic field, the conversion efficiency of each species is solely determined by the phase space density of the atomic cloud, in contrast to a number of theoretical predictions. Our novel model for the adiabatic pairing process, developed from general physical principles, accurately predicts the conversion efficiency for {\it both} ultracold gases of bosons and of fermions. In the non-adiabatic regime our measurements of the 85^{85}Rb molecule conversion efficiency follow a Landau Zener model, with a conversion efficiency that is characterized by the density divided by the time derivative of the magnetic field.Comment: 5 pages, 3 figure

    Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries

    Get PDF
    What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitaries. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.Comment: Added references to NMR refocusing and to earlier work by Leung et al and Jones and Knil

    Adiabatically changing the phase-space density of a trapped Bose gas

    Get PDF
    We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed measurements on spin-polarized atomic hydrogen in the Boltzmann regime demonstrating reversible changes of the degeneracy parameter (phase-space density) by more than a factor of two. This result is in perfect agreement with theory. By extending our theoretical analysis to the quantum degenerate regime we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition by an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR

    Atomic Parity Nonconservation and Nuclear Anapole Moments

    Get PDF
    Anapole moments are parity-odd, time-reversal-even moments of the E1 projection of the electromagnetic current. Although it was recognized, soon after the discovery of parity violation in the weak interaction, that elementary particles and composite systems like nuclei must have anapole moments, it proved difficult to isolate this weak radiative correction. The first successful measurement, an extraction of the nuclear anapole moment of 133Cs from the hyperfine dependence of the atomic parity violation, was obtained only recently. An important anapole moment bound in Tl also exists. We discuss these measurements and their significance as tests of the hadronic weak interaction, focusing on the mechanisms that operate within the nucleus to generate the anapole moment. The atomic results place new constraints on weak meson-nucleon couplings, ones we compare to existing bounds from a variety of p-p and nuclear tests of parity nonconservation.Comment: 35 pages; 8 figures; late

    Quantum synthesis of arbitrary unitary operators

    Get PDF
    Nature provides us with a restricted set of microscopic interactions. The question is whether we can synthesize out of these fundamental interactions an arbitrary unitary operator. In this paper we present a constructive algorithm for realization of any unitary operator which acts on a (truncated) Hilbert space of a single bosonic mode. In particular, we consider a physical implementation of unitary transformations acting on 1-dimensional vibrational states of a trapped ion. As an example we present an algorithm which realizes the discrete Fourier transform.Comment: 6 RevTeX pages with 3 figures, submitted to Phys.Rev.A, see also http://nic.savba.sk/sav/inst/fyzi/qo

    Deterministic delivery of externally cold and precisely positioned single molecular ions

    Full text link
    We present the preparation and deterministic delivery of a selectable number of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions subsequently confined in several linear Paul traps inter-connected via a quadrupole guide serves as a cold bath for a single or up to a few hundred molecular ions. Sympathetic cooling embeds the molecular ions in the crystalline structure. MgH^+ ions, that serve as a model system for a large variety of other possible molecular ions, are cooled down close to the Doppler limit and are positioned with an accuracy of one micrometer. After the production process, severely compromising the vacuum conditions, the molecular ion is efficiently transfered into nearly background-free environment. The transfer of a molecular ion between different traps as well as the control of the molecular ions in the traps is demonstrated. Schemes, optimized for the transfer of a specific number of ions, are realized and their efficiencies are evaluated. This versatile source applicable for broad charge-to-mass ratios of externally cold and precisely positioned molecular ions can serve as a container-free target preparation device well suited for diffraction or spectroscopic measurements on individual molecular ions at high repetition rates (kHz).Comment: 11 pages, 8 figure

    Stable Isotope Fractionation in Titan Aerosol Formation

    Get PDF
    Stable isotope ratio measurements are a powerful tool used to understand both ancient and modern planetary processes. Instruments on the Cassini- Huygens spacecraft along with ground-based observations have measured several isotope pairs, including C-13/C-12 and N-15/N-14, in Titan's atmosphere. This includes isotopic measurements of the major atmospheric species, CH4 and N2, along with HCN, HC3N, C2H2. C2H6 and C4H2. However, the isotopic fractionation of Titan's organic aerosol has not conclusively been measured and therefore the effect of aerosol formation as an isotopic fractionation pathway in Titan's atmosphere has not been considered. Laboratory studies have measured the carbon and/or nitrogen isotopic fractionation of Titan aerosol analogs. [18] found that the carbon fractionation of photochemical organic aerosol analogs are more enriched in C-13. This enrichment in the aerosol analogs is opposite of what is predicted for photochemical products by the kinetic isotope effect. Additionally, both [16] and [18] found that the nitrogen fractionation in the organic aerosol analogs are opposite of what is observed in Titan's atmospheric N2 and HCN, with the aerosol analogs being a light nitrogen sink. Here we monitor the gas phase during photochemical aerosol analog production as a function of reaction time. In a recirculation experiment, the isotopic fractionation of carbon within the gas-phase products is measured as the CH4 reservoir is depleted. This allows us to monitor the isotopic fractionation pathway during photochemical aerosol analog formation
    corecore