1,457 research outputs found
Spontaneous Dissociation of 85Rb Feshbach Molecules
The spontaneous dissociation of 85Rb dimers in the highest lying vibrational
level has been observed in the vicinity of the Feshbach resonance which was
used to produce them. The molecular lifetime shows a strong dependence on
magnetic field, varying by three orders of magnitude between 155.5 G and 162.2
G. Our measurements are in good agreement with theoretical predictions in which
molecular dissociation is driven by inelastic spin relaxation. Molecule
lifetimes of tens of milliseconds can be achieved close to resonance.Comment: 4 pages, 3 figure
Ultracold Molecule Production Via a Resonant Oscillating Magnetic Field
A novel atom-molecule conversion technique has been investigated. Ultracold 85Rb atoms sitting in a dc magnetic field near the 155 G Feshbach resonance are associated by applying a small sinusoidal oscillation to the magnetic field. There is resonant atom to molecule conversion when the modulation frequency closely matches the molecular binding energy. We observe that the atom to molecule conversion efficiency depends strongly on the frequency, amplitude, and duration of the applied modulation and on the phase space density of the sample. This technique offers high conversion efficiencies without the necessity of crossing or closely approaching the Feshbach resonance and allows precise spectroscopic measurements. Efficiencies of 55% have been observed for pure Bose-Einstein condensates
Production Efficiency of Ultracold Feshbach Molecules in Bosonic and Fermionic Systems
We investigate the production efficiency of ultracold molecules in bosonic
Rb and fermionic K when the magnetic field is swept across a
Feshbach resonance. For adiabatic sweeps of the magnetic field, the conversion
efficiency of each species is solely determined by the phase space density of
the atomic cloud, in contrast to a number of theoretical predictions. Our novel
model for the adiabatic pairing process, developed from general physical
principles, accurately predicts the conversion efficiency for {\it both}
ultracold gases of bosons and of fermions. In the non-adiabatic regime our
measurements of the Rb molecule conversion efficiency follow a Landau
Zener model, with a conversion efficiency that is characterized by the density
divided by the time derivative of the magnetic field.Comment: 5 pages, 3 figure
Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries
What interactions are sufficient to simulate arbitrary quantum dynamics in a
composite quantum system? We provide an efficient algorithm to simulate any
desired two-body Hamiltonian evolution using any fixed two-body entangling
n-qubit Hamiltonian and local unitaries. It follows that universal quantum
computation can be performed using any entangling interaction and local unitary
operations.Comment: Added references to NMR refocusing and to earlier work by Leung et al
and Jones and Knil
Adiabatically changing the phase-space density of a trapped Bose gas
We show that the degeneracy parameter of a trapped Bose gas can be changed
adiabatically in a reversible way, both in the Boltzmann regime and in the
degenerate Bose regime. We have performed measurements on spin-polarized atomic
hydrogen in the Boltzmann regime demonstrating reversible changes of the
degeneracy parameter (phase-space density) by more than a factor of two. This
result is in perfect agreement with theory. By extending our theoretical
analysis to the quantum degenerate regime we predict that, starting close
enough to the Bose-Einstein phase transition, one can cross the transition by
an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR
Atomic Parity Nonconservation and Nuclear Anapole Moments
Anapole moments are parity-odd, time-reversal-even moments of the E1
projection of the electromagnetic current. Although it was recognized, soon
after the discovery of parity violation in the weak interaction, that
elementary particles and composite systems like nuclei must have anapole
moments, it proved difficult to isolate this weak radiative correction. The
first successful measurement, an extraction of the nuclear anapole moment of
133Cs from the hyperfine dependence of the atomic parity violation, was
obtained only recently. An important anapole moment bound in Tl also exists. We
discuss these measurements and their significance as tests of the hadronic weak
interaction, focusing on the mechanisms that operate within the nucleus to
generate the anapole moment. The atomic results place new constraints on weak
meson-nucleon couplings, ones we compare to existing bounds from a variety of
p-p and nuclear tests of parity nonconservation.Comment: 35 pages; 8 figures; late
Quantum synthesis of arbitrary unitary operators
Nature provides us with a restricted set of microscopic interactions. The
question is whether we can synthesize out of these fundamental interactions an
arbitrary unitary operator. In this paper we present a constructive algorithm
for realization of any unitary operator which acts on a (truncated) Hilbert
space of a single bosonic mode. In particular, we consider a physical
implementation of unitary transformations acting on 1-dimensional vibrational
states of a trapped ion. As an example we present an algorithm which realizes
the discrete Fourier transform.Comment: 6 RevTeX pages with 3 figures, submitted to Phys.Rev.A, see also
http://nic.savba.sk/sav/inst/fyzi/qo
Recommended from our members
Sensor development and readout prototyping for the STAR Pixel detector
The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished
Deterministic delivery of externally cold and precisely positioned single molecular ions
We present the preparation and deterministic delivery of a selectable number
of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions
subsequently confined in several linear Paul traps inter-connected via a
quadrupole guide serves as a cold bath for a single or up to a few hundred
molecular ions. Sympathetic cooling embeds the molecular ions in the
crystalline structure. MgH^+ ions, that serve as a model system for a large
variety of other possible molecular ions, are cooled down close to the Doppler
limit and are positioned with an accuracy of one micrometer. After the
production process, severely compromising the vacuum conditions, the molecular
ion is efficiently transfered into nearly background-free environment. The
transfer of a molecular ion between different traps as well as the control of
the molecular ions in the traps is demonstrated. Schemes, optimized for the
transfer of a specific number of ions, are realized and their efficiencies are
evaluated. This versatile source applicable for broad charge-to-mass ratios of
externally cold and precisely positioned molecular ions can serve as a
container-free target preparation device well suited for diffraction or
spectroscopic measurements on individual molecular ions at high repetition
rates (kHz).Comment: 11 pages, 8 figure
Stable Isotope Fractionation in Titan Aerosol Formation
Stable isotope ratio measurements are a powerful tool used to understand both ancient and modern planetary processes. Instruments on the Cassini- Huygens spacecraft along with ground-based observations have measured several isotope pairs, including C-13/C-12 and N-15/N-14, in Titan's atmosphere. This includes isotopic measurements of the major atmospheric species, CH4 and N2, along with HCN, HC3N, C2H2. C2H6 and C4H2. However, the isotopic fractionation of Titan's organic aerosol has not conclusively been measured and therefore the effect of aerosol formation as an isotopic fractionation pathway in Titan's atmosphere has not been considered. Laboratory studies have measured the carbon and/or nitrogen isotopic fractionation of Titan aerosol analogs. [18] found that the carbon fractionation of photochemical organic aerosol analogs are more enriched in C-13. This enrichment in the aerosol analogs is opposite of what is predicted for photochemical products by the kinetic isotope effect. Additionally, both [16] and [18] found that the nitrogen fractionation in the organic aerosol analogs are opposite of what is observed in Titan's atmospheric N2 and HCN, with the aerosol analogs being a light nitrogen sink. Here we monitor the gas phase during photochemical aerosol analog production as a function of reaction time. In a recirculation experiment, the isotopic fractionation of carbon within the gas-phase products is measured as the CH4 reservoir is depleted. This allows us to monitor the isotopic fractionation pathway during photochemical aerosol analog formation
- …
