21,279 research outputs found

    The coral fauna of the Midway Eocene of Texas

    Get PDF
    The coral fauna of the Midway Eocene of Texas includes thirteen separate species and varieties. Only two of the species, each represented in a single locality by a single specimen, belong to the colonial types. The remaining eleven species, containing probably 95 per cent of the specimens, are all of solitary forms. Evidently the Texas Midway seas did not afford conditions favorable to the growth of reef-building corals

    On obtaining classical mechanics from quantum mechanics

    Get PDF
    Constructing a classical mechanical system associated with a given quantum mechanical one, entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum mechanical system naturally has the structure of an infinite dimensional symplectic manifold (`quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straight forwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and recovers the linear classical phase space R2N\mathbb{R}^{\mathrm{2N}}. We report on how the procedure also allows extraction of non-linear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (Polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality.Comment: revtex4, 24 pages, no figures. In the version 2 certain technical errors in section I-B are corrected, the part on WKB (and section II-B) is removed, discussion of dynamics and semiclassicality is extended and references are added. Accepted for publication on Classical and Quantum Gravit

    An overview of NASA intermittent combustion engine research

    Get PDF
    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants

    Benchmarking calculations of excitonic couplings between bacteriochlorophylls

    Full text link
    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions

    Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine and naphthalene

    Full text link
    Anisotropic displacement parameters (ADPs) are commonly used in crystallography, chemistry and related fields to describe and quantify thermal motion of atoms. Within the very recent years, these ADPs have become predictable by lattice dynamics in combination with first-principles theory. Here, we study four very different molecular crystals, namely urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene, by first-principles theory to assess the quality of ADPs calculated in the quasi-harmonic approximation. In addition, we predict both thermal expansion and thermal motion within the quasi-harmonic approximation and compare the predictions with experimental data. Very reliable ADPs are calculated within the quasi-harmonic approximation for all four cases up to at least 200 K, and they turn out to be in better agreement with experiment than the harmonic ones. In one particular case, ADPs can even reliably be predicted up to room temperature. Our results also hint at the importance of normal-mode anharmonicity in the calculation of ADPs

    New Coordinates for the Amplitude Parameter Space of Continuous Gravitational Waves

    Get PDF
    The parameter space for continuous gravitational waves (GWs) can be divided into amplitude parameters (signal amplitude, inclination and polarization angles describing the orientation of the source, and an initial phase) and phase-evolution parameters. The division is useful in part because the Jaranowski-Krolak-Schutz (JKS) coordinates on the four-dimensional amplitude parameter space allow the GW signal to be written as a linear combination of four template waveforms with the JKS coordinates as coefficients. We define a new set of coordinates on the amplitude parameter space, with the same properties, which is more closely connected to the physical amplitude parameters. These naturally divide into two pairs of Cartesian-like coordinates on two-dimensional subspaces, one corresponding to left- and the other to right-circular polarization. We thus refer to these as CPF (circular polarization factored) coordinates. The corresponding two sets of polar coordinates (known as CPF-polar) can be related in a simple way to the physical parameters. We illustrate some simplifying applications for these various coordinate systems, such as: a calculation of Jacobians between various coordinate systems; an illustration of the signal coordinate singularities associated with left- and right-circular polarization, which correspond to the origins of the two two-dimensional subspaces; and an elucidation of the form of the log-likelihood ratio between hypotheses of Gaussian noise with and without a continuous GW signal. These are used to illustrate some of the prospects for approximate evaluation of a Bayesian detection statistic defined by marginalization over the physical parameter space. Additionally, in the presence of simplifying assumptions about the observing geometry, we are able to explicitly evaluate the integral for the Bayesian detection statistic, and compare it to the approximate results.Comment: REVTeX, 18 pages, 8 image files included in 7 figure
    corecore