21,279 research outputs found
The coral fauna of the Midway Eocene of Texas
The coral fauna of the Midway Eocene of Texas includes thirteen
separate species and varieties. Only two of the species, each represented in a single locality by a single specimen, belong to the
colonial types. The remaining eleven species, containing probably
95 per cent of the specimens, are all of solitary forms. Evidently
the Texas Midway seas did not afford conditions favorable to the
growth of reef-building corals
On obtaining classical mechanics from quantum mechanics
Constructing a classical mechanical system associated with a given quantum
mechanical one, entails construction of a classical phase space and a
corresponding Hamiltonian function from the available quantum structures and a
notion of coarser observations. The Hilbert space of any quantum mechanical
system naturally has the structure of an infinite dimensional symplectic
manifold (`quantum phase space'). There is also a systematic, quotienting
procedure which imparts a bundle structure to the quantum phase space and
extracts a classical phase space as the base space. This works straight
forwardly when the Hilbert space carries weakly continuous representation of
the Heisenberg group and recovers the linear classical phase space
. We report on how the procedure also allows
extraction of non-linear classical phase spaces and illustrate it for Hilbert
spaces being finite dimensional (spin-j systems), infinite dimensional but
separable (particle on a circle) and infinite dimensional but non-separable
(Polymer quantization). To construct a corresponding classical dynamics, one
needs to choose a suitable section and identify an effective Hamiltonian. The
effective dynamics mirrors the quantum dynamics provided the section satisfies
conditions of semiclassicality and tangentiality.Comment: revtex4, 24 pages, no figures. In the version 2 certain technical
errors in section I-B are corrected, the part on WKB (and section II-B) is
removed, discussion of dynamics and semiclassicality is extended and
references are added. Accepted for publication on Classical and Quantum
Gravit
An overview of NASA intermittent combustion engine research
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants
Understanding the role of electron and hole trions on current transport in aluminium tris(8-hydroxyquinoline) using organic magnetoresistance
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for
simulating energy transport in photosynthetic complexes. Many techniques for
calculating the couplings are in use, from the simple (but inaccurate)
point-dipole approximation to fully quantum-chemical methods. We compared
several approximations to determine their range of applicability, noting that
the propagation of experimental uncertainties poses a fundamental limit on the
achievable accuracy. In particular, the uncertainty in crystallographic
coordinates yields an uncertainty of about 20% in the calculated couplings.
Because quantum-chemical corrections are smaller than 20% in most biologically
relevant cases, their considerable computational cost is rarely justified. We
therefore recommend the electrostatic TrEsp method across the entire range of
molecular separations and orientations because its cost is minimal and it
generally agrees with quantum-chemical calculations to better than the
geometric uncertainty. We also caution against computationally optimizing a
crystal structure before calculating couplings, as it can lead to large,
uncontrollable errors. Understanding the unavoidable uncertainties can guard
against striving for unrealistic precision; at the same time, detailed
benchmarks can allow important qualitative questions--which do not depend on
the precise values of the simulation parameters--to be addressed with greater
confidence about the conclusions
Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine and naphthalene
Anisotropic displacement parameters (ADPs) are commonly used in
crystallography, chemistry and related fields to describe and quantify thermal
motion of atoms. Within the very recent years, these ADPs have become
predictable by lattice dynamics in combination with first-principles theory.
Here, we study four very different molecular crystals, namely urea,
bromomalonic aldehyde, pentachloropyridine, and naphthalene, by
first-principles theory to assess the quality of ADPs calculated in the
quasi-harmonic approximation. In addition, we predict both thermal expansion
and thermal motion within the quasi-harmonic approximation and compare the
predictions with experimental data. Very reliable ADPs are calculated within
the quasi-harmonic approximation for all four cases up to at least 200 K, and
they turn out to be in better agreement with experiment than the harmonic ones.
In one particular case, ADPs can even reliably be predicted up to room
temperature. Our results also hint at the importance of normal-mode
anharmonicity in the calculation of ADPs
New Coordinates for the Amplitude Parameter Space of Continuous Gravitational Waves
The parameter space for continuous gravitational waves (GWs) can be divided
into amplitude parameters (signal amplitude, inclination and polarization
angles describing the orientation of the source, and an initial phase) and
phase-evolution parameters. The division is useful in part because the
Jaranowski-Krolak-Schutz (JKS) coordinates on the four-dimensional amplitude
parameter space allow the GW signal to be written as a linear combination of
four template waveforms with the JKS coordinates as coefficients. We define a
new set of coordinates on the amplitude parameter space, with the same
properties, which is more closely connected to the physical amplitude
parameters. These naturally divide into two pairs of Cartesian-like coordinates
on two-dimensional subspaces, one corresponding to left- and the other to
right-circular polarization. We thus refer to these as CPF (circular
polarization factored) coordinates. The corresponding two sets of polar
coordinates (known as CPF-polar) can be related in a simple way to the physical
parameters. We illustrate some simplifying applications for these various
coordinate systems, such as: a calculation of Jacobians between various
coordinate systems; an illustration of the signal coordinate singularities
associated with left- and right-circular polarization, which correspond to the
origins of the two two-dimensional subspaces; and an elucidation of the form of
the log-likelihood ratio between hypotheses of Gaussian noise with and without
a continuous GW signal. These are used to illustrate some of the prospects for
approximate evaluation of a Bayesian detection statistic defined by
marginalization over the physical parameter space. Additionally, in the
presence of simplifying assumptions about the observing geometry, we are able
to explicitly evaluate the integral for the Bayesian detection statistic, and
compare it to the approximate results.Comment: REVTeX, 18 pages, 8 image files included in 7 figure
- …
