4,303 research outputs found
The morpho-kinematics of the circumstellar envelope around the AGB star EP Aqr
ALMA observations of CO(1-0) and CO(2-1) emissions of the circumstellar
envelope of EP Aqr, an oxygen-rich AGB star, are reported. A thorough analysis
of their properties is presented using an original method based on the
separation of the data-cube into a low velocity component associated with an
equatorial outflow and a faster component associated with a bipolar outflow. A
number of important and new results are obtained concerning the distribution in
space of the effective emissivity, the temperature, the density and the flux of
matter. A mass loss rate of (1.60.4)10 solar masses per year is
measured. The main parameters defining the morphology and kinematics of the
envelope are evaluated and uncertainties inherent to de-projection are
critically discussed. Detailed properties of the equatorial region of the
envelope are presented including a measurement of the line width and a precise
description of the observed inhomogeneity of both morphology and kinematics. In
particular, in addition to the presence of a previously observed spiral
enhancement of the morphology at very small Doppler velocities, a similarly
significant but uncorrelated circular enhancement of the expansion velocity is
revealed, both close to the limit of sensitivity. The results of the analysis
place significant constraints on the parameters of models proposing
descriptions of the mass loss mechanism, but cannot choose among them with
confidence.Comment: 26 pages, 31 figures, accepted for publication in MNRA
12CO emission from EP Aqr: Another example of an axi-symmetric AGB wind?
The CO(1-0) and (2-1) emission of the circumstellar envelope of the AGB star
EP Aqr has been observed using the IRAM PdBI and the IRAM 30-m telescope. The
line profiles reveal the presence of two distinct components centered on the
star velocity, a broad component extending up to ~10 km/s and a narrow
component indicating an expansion velocity of ~2 km/s. An early analysis of
these data was performed under the assumption of isotropic winds. The present
study revisits this interpretation by assuming instead a bipolar outflow nearly
aligned with the line of sight. A satisfactory description of the observed flux
densities is obtained with a radial expansion velocity increasing from ~2 km/s
at the equator to ~10 km/s near the poles. The angular aperture of the bipolar
outflow is ~45 deg with respect to the star axis, which makes an angle of ~13
deg with the line of sight. A detailed study of the CO(1-0) to CO(2-1) flux
ratio reveals a significant dependence of the temperature on the star latitude,
smaller and steeper at the poles than at the equator at large distances from
the star. Under the hypothesis of radial expansion and of rotation invariance
about the star axis, the effective density has been evaluated in space as a
function of star coordinates. Evidence is found for an enhancement of the
effective density in the northern hemisphere of the star at angular distances
in excess of ~3" and covering the whole longitudinal range. The peak velocity
of the narrow component is observed to vary slightly with position on the sky,
a variation consistent with the model and understood as the effect of the
inclination of the star axis with respect to the line of sight. While the
phenomenological model presented here reproduces well the general features of
the observations, significant differences are also revealed, which would
require a better spatial resolution to be properly described.Comment: accepted for publication in Astronomy & Astrophysic
Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB
Context. The majority of stars that leave the main sequence are undergoing
extensive mass loss, in particular during the asymptotic giant branch (AGB)
phase of evolution. Observations show that the rate at which this phenomenon
develops differs highly from source to source, so that the time-integrated mass
loss as a function of the initial conditions (mass, metallicity, etc.) and of
the stage of evolution is presently not well understood. Aims. We are
investigating the mass loss history of AGB stars by observing the molecular and
atomic emissions of their circumstellar envelopes. Methods. In this work we
have selected two stars that are on the thermally pulsing phase of the AGB
(TP-AGB) and for which high quality data in the CO rotation lines and in the
atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon
star of the Irregular variability type, shows a complex CO line profile that
may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a
young (< 10^4 years) fast outflow at a rate of ~ 5 10^-7 Msol/yr. Intense HI
emission indicates a detached shell with 0.044 Msol of hydrogen. This shell
probably results from the slowing-down, by surrounding matter, of the same
long-lived wind observed in CO that has been active during ~ 6 10^5 years. On
the other hand, the carbon Mira V CrB is presently undergoing mass loss at a
rate of 2 10^-7 Msol/yr, but was not detected in HI. The wind is mostly
molecular, and was active for at most 3 10^4 years, with an integrated mass
loss of at most 6.5 10^-3 Msol. Conclusions. Although both sources are carbon
stars on the TP-AGB, they appear to develop mass loss under very different
conditions, and a high rate of mass loss may not imply a high integrated mass
loss.Comment: Accepted for publication in Astron. Astrophy
The core structure of presolar graphite onions
Of the ``presolar particles'' extracted from carbonaceous chondrite
dissolution residues, i.e. of those particles which show isotopic evidence of
solidification in the neighborhood of other stars prior to the origin of our
solar system, one subset has an interesting concentric
graphite-rim/graphene-core structure. We show here that single graphene sheet
defects in the onion cores (e.g. cyclopentane loops) may be observable edge-on
by HREM. This could allow a closer look at models for their formation, and in
particular strengthen the possibility that growth of these assemblages proceeds
atom-by-atom with the aid of such in-plane defects, under conditions of growth
(e.g. radiation fluxes or grain temperature) which discourage the graphite
layering that dominates subsequent formation of the rim.Comment: 4 pages, 7 figures, 11 refs, see also
http://www.umsl.edu/~fraundor/isocore.htm
The COBE DIRBE Point Source Catalog
We present the COBE DIRBE Point Source Catalog, an all-sky catalog containing
infrared photometry in 10 bands from 1.25 microns to 240 microns for 11,788 of
the brightest near and mid-infrared point sources in the sky. Since DIRBE had
excellent temporal coverage (100 - 1900 independent measurements per object
during the 10 month cryogenic mission), the Catalog also contains information
about variability at each wavelength, including amplitudes of variation
observed during the mission. Since the DIRBE spatial resolution is relatively
poor (0.7 degrees), we have carefully investigated the question of confusion,
and have flagged sources with infrared-bright companions within the DIRBE beam.
In addition, we filtered the DIRBE light curves for data points affected by
companions outside of the main DIRBE beam but within the `sky' portion of the
scan. At high Galactic latitudes (|b| > 5 degrees), the Catalog contains
essentially all of the unconfused sources with flux densities greater than 90,
60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns,
respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7,
1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the
completeness is less certain because of the large DIRBE beam and possible
contributions from extended emission. The Catalog also contains the names of
the sources in other catalogs, their spectral types, variability types, and
whether or not the sources are known OH/IR stars. We discuss a few remarkable
objects in the Catalog. [abridged]Comment: Accepted for publication in the Astrophysical Journal Supplement. The
full tables are available at http://www.etsu.edu/physics/bsmith/dirbe
Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields
An overview is presented of laser spectroscopy experiments with cold,
trapped, highly-charged ions, which will be performed at the HITRAP facility at
GSI in Darmstadt (Germany). These high-resolution measurements of ground state
hyperfine splittings will be three orders of magnitude more precise than
previous measurements. Moreover, from a comparison of measurements of the
hyperfine splittings in hydrogen- and lithium-like ions of the same isotope,
QED effects at high electromagnetic fields can be determined within a few
percent. Several candidate ions suited for these laser spectroscopy studies are
presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics
(2006
HI and CO in the circumstellar environment of the oxygen-rich AGB star RX Lep
Circumstellar shells around AGB stars are built over long periods of time
that may reach several million years. They may therefore be extended over large
sizes (~1 pc, possibly more), and different complementary tracers are needed to
describe their global properties. In the present work, we combined 21-cm HI and
CO rotational line data obtained on an oxygen-rich semi-regular variable, RX
Lep, to describe the global properties of its circumstellar environment. With
the SEST, we detected the CO(2-1) rotational line from RX Lep. The line profile
is parabolic and implies an expansion velocity of ~4.2 km/s and a mass-loss
rate ~1.7 10^-7 Msun/yr (d = 137 pc). The HI line at 21 cm was detected with
the Nancay Radiotelescope on the star position and at several offset positions.
The linear shell size is relatively small, ~0.1 pc, but we detect a trail
extending southward to ~0.5 pc. The line profiles are approximately Gaussian
with an FWHM ~3.8 km/s and interpreted with a model developed for the detached
shell around the carbon-rich AGB star Y CVn. Our HI spectra are well-reproduced
by assuming a constant outflow (Mloss = 1.65 10^-7 Msun/yr) of ~4 10^4 years
duration, which has been slowed down by the external medium. The spatial offset
of the HI source is consistent with the northward direction of the proper
motion, lending support to the presence of a trail resulting from the motion of
the source through the ISM, as already suggested for Mira, RS Cnc, and other
sources detected in HI. The source was also observed in SiO (3 mm) and OH (18
cm), but not detected. The properties of the external parts of circumstellar
shells around AGB stars should be dominated by the interaction between stellar
outflows and external matter for oxygen-rich, as well as for carbon-rich,
sources, and the 21-cm HI line provides a very useful tracer of these regions.Comment: 15 pages, 9 figures, accepted for publication in A&
- …
