2,789 research outputs found

    Solutions to the Jaynes-Cummings model without the rotating-wave approximation

    Full text link
    By using extended bosonic coherent states, the solution to the Jaynes-Cummings model without the rotating-wave approximation can be mapped to that of a polynomial equation with a single variable. The solutions to this polynomial equation can give all eigenvalues and eigenfunctions of this model with all values of the coupling strength and the detuning exactly, which can be readily applied to recent circuit quantum electrodynamic systems operating in the ultra-strong coupling regime.Comment: 6 pages,3 figure

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Data-driven image color theme enhancement

    Get PDF
    Proceedings of the 3rd ACM SIGGRAPH Asia 2010, Seoul, South Korea, 15-18 December 2010It is often important for designers and photographers to convey or enhance desired color themes in their work. A color theme is typically defined as a template of colors and an associated verbal description. This paper presents a data-driven method for enhancing a desired color theme in an image. We formulate our goal as a unified optimization that simultaneously considers a desired color theme, texture-color relationships as well as automatic or user-specified color constraints. Quantifying the difference between an image and a color theme is made possible by color mood spaces and a generalization of an additivity relationship for two-color combinations. We incorporate prior knowledge, such as texture-color relationships, extracted from a database of photographs to maintain a natural look of the edited images. Experiments and a user study have confirmed the effectiveness of our method. © 2010 ACM.postprin

    Andreev bound states and π\pi -junction transition in a superconductor / quantum-dot / superconductor system

    Full text link
    We study Andreev bound states and π\pi -junction transition in a superconductor / quantum-dot / superconductor (S-QD-S) system by Green function method. We derive an equation to describe the Andreev bound states in S-QD-S system, and provide a unified understanding of the π\pi -junction transition caused by three different mechanisms: (1) {\it Zeeman splitting.} For QD with two spin levels EE_{\uparrow} and EE_{\downarrow}, we find that the surface of the Josephson current I(ϕ=π2)I(\phi =\frac \pi 2) vs the configuration of (E,E)(E_{\uparrow},E_{\downarrow}) exhibits interesting profile: a sharp peak around E=E=0E_{\uparrow}=E_{\downarrow}=0; a positive ridge in the region of EE>0E_{\uparrow}\cdot E_{\downarrow}>0; and a {\em % negative}, flat, shallow plain in the region of EE<0E_{\uparrow}\cdot E_{\downarrow}<0. (2){\it \ Intra-dot interaction.} We deal with the intra-dot Coulomb interaction by Hartree-Fock approximation, and find that the system behaves as a π\pi -junction when QD becomes a magnetic dot due to the interaction. The conditions for π\pi -junction transition are also discussed. (3) {\it \ Non-equilibrium distribution.} We replace the Fermi distribution f(ω)f(\omega) by a non-equilibrium one 12[f(ωVc)+f(ω+Vc)]\frac 12[ f(\omega -V_c)+f(\omega +V_c)] , and allow Zeeman splitting in QD where % E_{\uparrow}=-E_{\downarrow}=h. The curves of I(ϕ=π2)I(\phi =\frac \pi 2) vs % V_c show the novel effect of interplay of non-equilibrium distribution with magnetization in QD.Comment: 18 pages, 8 figures, Late

    Distribution of Spectral Lags in Gamma Ray Bursts

    Full text link
    Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given long GRB.Comment: 20 pages, 4 figure

    Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs

    Full text link
    In a composite system of gravitationally coupled stellar and gaseous discs, we perform linear stability analysis for axisymmetric coplanar perturbations using the two-fluid formalism. The background stellar and gaseous discs are taken to be scale-free with all physical variables varying as powers of cylindrical radius rr with compatible exponents. The unstable modes set in as neutral modes or stationary perturbation configurations with angular frequency ω=0\omega=0.Comment: 7 pages using AAS styl

    An interpretation for the entropy of a black hole

    Full text link
    We investigate the meaning of the entropy carried away by Hawking radiations from a black hole. We propose that the entropy for a black hole measures the uncertainty of the information about the black hole forming matter's precollapsed configurations, self-collapsed configurations, and inter-collapsed configurations. We find that gravitational wave or gravitational radiation alone cannot carry all information about the processes of black hole coalescence and collapse, while the total information locked in the hole could be carried away completely by Hawking radiation as tunneling

    Derivation of the Effective Chiral Lagrangian for Pseudoscalar Mesons from QCD

    Full text link
    We formally derive the chiral Lagrangian for low lying pseudoscalar mesons from the first principles of QCD considering the contributions from the normal part of the theory without taking approximations. The derivation is based on the standard generating functional of QCD in the path integral formalism. The gluon-field integration is formally carried out by expressing the result in terms of physical Green's functions of the gluon. To integrate over the quark-field, we introduce a bilocal auxiliary field Phi(x,y) representing the mesons. We then develop a consistent way of extracting the local pseudoscalar degree of freedom U(x) in Phi(x,y) and integrating out the rest degrees of freedom such that the complete pseudoscalar degree of freedom resides in U(x). With certain techniques, we work out the explicit U(x)-dependence of the effective action up to the p^4-terms in the momentum expansion, which leads to the desired chiral Lagrangian in which all the coefficients contributed from the normal part of the theory are expressed in terms of certain Green's functions in QCD. Together with the existing QCD formulae for the anomaly contributions, the present results leads to the complete QCD definition of the coefficients in the chiral Lagrangian. The relation between the present QCD definition of the p^2-order coefficient F_0^2 and the well-known approximate result given by Pagels and Stokar is discussed.Comment: 16 pages in RevTex, some typos are corrected, version for publication in Phys. Rev.

    Parallel momentum distribution of the 28^{28}Si fragments from 29^{29}P

    Full text link
    Distribution of the parallel momentum of 28^{28}Si fragments from the breakup of 30.7 MeV/nucleon 29^{29}P has been measured on C targets. The distribution has the FWHM with the value of 110.5 ±\pm 23.5 MeV/c which is consistent quantitatively with Galuber model calculation assuming by a valence proton in 29^{29}P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in 29^{29}P.Comment: 4 pages, 4 figure

    A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    Full text link
    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30^{30}Si + 243^{243}Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12] and [19
    corecore