44,260 research outputs found

    Improving information filtering via network manipulation

    Get PDF
    Recommender system is a very promising way to address the problem of overabundant information for online users. Though the information filtering for the online commercial systems received much attention recently, almost all of the previous works are dedicated to design new algorithms and consider the user-item bipartite networks as given and constant information. However, many problems for recommender systems such as the cold-start problem (i.e. low recommendation accuracy for the small degree items) are actually due to the limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy to enhance the performance of the already existing recommendation algorithms by directly manipulating the user-item bipartite networks, namely adding some virtual connections to the networks. Numerical analyses on two benchmark data sets, MovieLens and Netflix, show that our method can remarkably improve the recommendation performance. Specifically, it not only improve the recommendations accuracy (especially for the small degree items), but also help the recommender systems generate more diverse and novel recommendations.Comment: 6 pages, 5 figure

    Robust Binary Fused Compressive Sensing using Adaptive Outlier Pursuit

    Full text link
    We propose a new method, {\it robust binary fused compressive sensing} (RoBFCS), to recover sparse piece-wise smooth signals from 1-bit compressive measurements. The proposed method is a modification of our previous {\it binary fused compressive sensing} (BFCS) algorithm, which is based on the {\it binary iterative hard thresholding} (BIHT) algorithm. As in BIHT, the data term of the objective function is a one-sided 1\ell_1 (or 2\ell_2) norm. Experiments show that the proposed algorithm is able to take advantage of the piece-wise smoothness of the original signal and detect sign flips and correct them, achieving more accurate recovery than BFCS and BIHT.Comment: Accepted by ICASSP 201

    Integrable dispersionless KdV hierarchy with sources

    Full text link
    An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge

    The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features

    Full text link
    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called home advantage phenomenon date back to the 70's and every since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the microscopic dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased 0.16 points per minute (on average the seasons 2004-05 to 2013-14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only 0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon.Comment: Accepted for publication in PLoS ON

    Six-fold configurational anisotropy and magnetic reversal in nanoscale Permalloy triangles

    Full text link
    Six-fold configurational anisotropy was studied in Permalloy triangles, in which the shape symmetry order yields two energetically non-degenerate micromagnetic configurations of the spins, the so-called "Y" and "buckle" states. A twelve pointed switching astroid was measured using magneto-optical experiments and successfully reproduced numerically, with different polar quadrants identified as specific magnetic transitions, thereby giving a comprehensive view of the magnetic reversal in these structures. A detailed analysis highlighted the necessity to include the physical rounding of the structures in the simulations to account for the instability of the Y state.Comment: 3 pages, 4 figure
    corecore